Abstract

The leakage flow characteristics of the variable bristle diameter (VBD) brush seals are numerically investigated using the three-dimensional (3D) tube bundle model with consideration of bristle pack stratification. The discretization of the computational domain applies the multiblock structured mesh, which ensures that there is no need to set interfaces between the fluid domains of the bristle pack and the cavities to eliminate interpolation errors. The bristle pack stratification is achieved by using mesh motion technique from the point of cause-effect. The effects of pressure ratio (Rp=1.5,2.5,3.5), axial rows of bristles (Nx=921), sealing clearance (c=0,0.1mm), bristle pack arrangements, and bristles gapping (gi=0,0.005,0.010,0.015mm) on the leakage flow characteristics and aerodynamic forces are conducted. The recorded leakage flow of the 3D tube bundle model is multiplied by circumferential loop number (Ncl) to determine total leakage flow rate of the brush seal. The numerical results agreed well with the experimental data, which verifies the reliability of the numerical method. The numerical results indicate that the leakage flow rate increases linearly with the pressure ratio. The increase of Nx has a distinctly different effect on the relative rate of leakage flow for the contacting and clearance brush seals. The use of large diameter bristles weakens the sealing performance of the brush seals, particularly in the rear region. Bristle pack stratification can improve the sealing performance of the brush seals. The large diameter bristles increase the porosity and reduce the flow resistance coefficients. On the contrary, the bristle pack stratification decreases the porosity and rises the flow resistance coefficients in the rear region. The results of this article indicate when designing VBD brush seals, the effects of bristle diameter and bristle density on the sealing performance and pressure loading capacity of the brush seals should be fully considered.

References

1.
Steinetz
,
B. M.
,
Hendricks
,
R. C.
, and
Munson
,
J.
,
1998
, “
Advanced Seal Technology Role in Meeting Next Generation Turbine Engine Goals
,”
Design Principles and Methods for Aircraft Gas Turbine Engines
, Toulouse, France, May 11–15.http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.456.4335
2.
Chupp
,
R. E.
,
Hendricks
,
R. C.
,
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2006
, “
Sealing in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
313
349
.10.2514/1.17778
3.
Dinc
,
S.
,
Demiroglu
,
M.
,
Turnquist
,
N.
,
Mortzheim
,
J.
,
Goetze
,
G.
,
Maupin
,
J.
,
Hopkins
,
J.
,
Wolfe
,
C.
, and
Florin
,
M.
,
2002
, “
Fundamental Design Issues of Brush Seals for Industrial Applications
,”
ASME J. Turbomach.
,
124
(
2
), pp.
293
300
.10.1115/1.1451847
4.
Bhate
,
N.
,
Thermos
,
A. C.
,
Aksit
,
M. F.
,
Demiroglu
,
M.
, and
Kizil
,
H.
,
2004
, “
Non-Metallic Brush Seals for Gas Turbine Bearings
,”
ASME
Paper No. GT2004-54296.10.1115/GT2004-54296
5.
Thakare
,
M. R.
,
Mason
,
J. F.
,
Owen
,
A. K.
,
Gillespie
,
D. R. H.
,
Wilkinson
,
A. J.
, and
Franceschini
,
G.
,
2016
, “
Effect of Sliding Speed and Counterface Properties on the Tribo-Oxidation of Brush Seal Material Under Dry Sliding Conditions
,”
Tribol. Int.
,
96
, pp.
373
381
.10.1016/j.triboint.2013.02.010
6.
Dogu
,
Y.
, and
Aksit
,
M. F.
,
2006
, “
Effects of Geometry on Brush Seal Pressure and Flow Fields—Part I: Front Plate Configurations
,”
ASME J. Turbomach.
,
128
(
2
), pp.
367
378
.10.1115/1.2101857
7.
Raben
,
M.
,
Friedrichs
,
J.
,
Helmis
,
T.
, and
Flegler
,
J.
,
2016
, “
Brush Seals Used in Steam Environments-Chronological Wear Development and the Impact of Different Seal Designs
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
051901
.10.1115/1.4031531
8.
Schwarz
,
H.
,
Friedrichs
,
J.
, and
Flegler
,
J.
,
2014
, “
Axial Inclination of the Bristle Pack, a New Design Parameter of Brush Seals for Improved Operational Behavior in Steam Turbines
,”
ASME
Paper No. GT2014-26330.10.1115/GT2014-26330
9.
Trivedi
,
D.
,
Roy
,
B.
,
Demiroglu
,
M.
, and
Zheng
,
X.
,
2013
, “
Experimental Characterization of Variable Bristle Diameter Brush Seal Leakage, Stiffness and Wear
,”
ASME
Paper No. GT2013-95086.10.1115/GT2013-95086
10.
Zheng
,
X. Q.
,
Mack
,
M.
,
Demiroglu
,
M.
,
Trivedi
,
D.
, and
Roy
,
B.
,
2013
, “
Design, Manufacture and Testing of Variable Bristle Diameter Brush Seals
,”
AIAA
Paper No. AIAA 2013-3859.10.2514/6.2013-3859
11.
Dogu
,
Y.
,
2005
, “
Investigation of Brush Seal Flow Characteristics Using Bulk Porous Medium Approach
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
136
144
.10.1115/1.1808425
12.
Hendricks
,
R. C.
,
Schlumberger
,
S.
,
Braun
,
M. J.
,
Choy
,
F.
,
Mullen
,
R. L.
, and
Canacci
,
V. A.
,
1991
, “
A Bulk Flow Model of a Brush Seal System
,”
ASME
Paper No. 91-GT-325.10.1115/1991-GT-325
13.
Dogu
,
Y.
,
Sertcakan
,
M. C.
,
Gezer
,
K.
, and
Kocagul
,
M.
,
2018
, “
Flow Resistance Coefficients of Porous Brush Seal as a Function of Pressure Load
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
082504
.10.1115/1.4038994
14.
Ha
,
Y.
,
Ha
,
T.
,
Byun
,
J.
, and
Lee
,
Y.
,
2020
, “
Leakage Effects Due to Bristle Deflection and Wear in Hybrid Brush Seal of High-Pressure Steam Turbine
,”
Tribol. Int.
,
150
, p.
106325
.10.1016/j.triboint.2020.106325
15.
Deville
,
L.
, and
Arghir
,
M.
,
2018
, “
Theoretical Analysis of Brush Seals Leakage Using Local Computational Fluid Dynamics Estimated Permeability Laws
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
062803
.10.1115/1.4038469
16.
Fuchs
,
A.
, and
Haidn
,
O. J.
,
2019
, “
Effects of Uncertainty and Quasi-Chaotic Geometry on the Leakage of Brush Seals
,”
ASME J. Turbomach.
,
141
(
2
), p.
021003
.10.1115/1.4041081
17.
Kang
,
Y. C.
,
Liu
,
M. H.
,
Kao-Walter
,
S.
,
Reheman
,
W.
, and
Liu
,
J. B.
,
2018
, “
Predicting Aerodynamic Resistance of Brush Seals Using Computational Fluid Dynamics and a 2-D Tube Banks Model
,”
Tribol. Int.
,
126
, pp.
9
15
.10.1016/j.triboint.2018.04.023
18.
Huang
,
S. Q.
,
Suo
,
S. F.
,
Li
,
Y.
, and
Yang
,
J.
,
2016
, “
Flow in Brush Seals Based on a 2-D Staggered Tube Bundle Model
,”
J. Tsinghua Univ. (Sci. Technol.)
,
56
(
2
), pp.
160
166
.10.16511/j.cnki.qhdxxb.2015.22.005
19.
Schwarz
,
H.
,
Friedrichs
,
J.
, and
Flegler
,
J.
, “
Design Parameters of Brush Seals and Their Impact on Seal Performance
,”
ASME
Paper No. GT2012-68956.10.1115/GT2012-68956
20.
Sun
,
D.
,
Du
,
C. Y.
,
Liu
,
Y. Q.
,
Zhan
,
P.
, and
Xin
,
Q.
,
2019
, “
Experimental Investigation on the Bristle Deflection and Oscillation Characteristics of Brush Seals
,”
Acta Aeronaut. Astronaut. Sin.
, 41(10), p.
123364
.10.7527/S1000-6893.2019.23364
21.
Deville
,
L.
, and
Arghir
,
M.
,
2019
, “
Experimental Analysis of Small Diameter Brush Seals and Comparisons With Theoretical Predictions
,”
ASME J. Tribol.
,
141
(
1
), p.
12201
.10.1115/1.4040596
22.
Chew
,
J. W.
, and
Guardino
,
C.
,
2004
, “
Simulation of Flow and Heat Transfer in the Tip Region of a Brush Seal
,”
Int. J. Heat Fluid Flow
,
25
(
4
), pp.
649
658
.10.1016/j.ijheatfluidflow.2003.12.001
23.
Huang
,
S. Q.
,
Suo
,
S. F.
,
Li
,
Y. J.
, and
Wang
,
Y. M.
,
2014
, “
Theoretical and Experimental Investigation on Tip Forces and Temperature Distributions of the Brush Seal Coupled Aerodynamic Force
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
052502
.10.1115/1.4026074
24.
Pekris
,
M. J.
,
Franceschini
,
G.
, and
Gillespie
,
D. R. H.
,
2014
, “
An Investigation of Flow, Mechanical, and Thermal Performance of Conventional and Pressure-Balanced Brush Seals
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
062502
.10.1115/1.4026243
25.
Lelli
,
D.
,
Chew
,
J. W.
, and
Cooper
,
P.
,
2006
, “
Combined Three-Dimensional Fluid Dynamics and Mechanical Modeling of Brush Seals
,”
ASME J Turbomach.
,
128
(
1
), pp.
188
195
.10.1115/1.2103093
26.
Liu
,
Y.
,
Chew
,
J. W.
,
Pekris
,
M. J.
, and
Kong
,
X.
,
2019
, “
The Effect of Inlet Swirl on Brush Seal Bristle Deflections and Stability
,”
ASME
Paper No. GT2019-90137.10.1115/GT2019-90137
27.
Sun
,
D.
,
Liu
,
N. N.
,
Fei
,
C. W.
,
Hu
,
G. Y.
,
Ai
,
Y. T.
, and
Choy
,
Y. S.
,
2016
, “
Theoretical and Numerical Investigation on the Leakage Characteristics of Brush Seals Based on Fluid-Structure Interaction
,”
Aerosp. Sci. Technol.
,
58
, pp.
207
216
.10.1016/j.ast.2016.08.023
28.
Metha
,
J.
,
Holloway
,
G.
, and
Askew
,
J.
,
2007
, “
Rotating Intershaft Brush Seal for Sealing Between Rotating Shafts—Part II: Experimental Data Evaluation and Modeling of the Brush Seal Leakage Flows
,”
AIAA
Paper No. 2007-5733.10.2514/6.2007-5733
29.
Bayley
,
F. J.
, and
Long
,
C. A.
,
1993
, “
A Combined Experimental and Theoretical-Study of Flow and Pressure Distributions in a Brush Seal
,”
ASME J. Eng. Gas Turbines Power
,
115
(
2
), pp.
404
410
.10.1115/1.2906723
30.
ANSYS, Inc.
, 2017, “CFX, 18.2 Users Guide,”
ANSYS
,
Pittsburgh, PA
.
31.
Gaszner
,
M.
,
Pugachev
,
A. O.
,
Georgakis
,
C.
, and
Cooper
,
P.
,
2013
, “
Leakage and Rotordynamic Coefficients of Brush Seals With Zero Cold Clearance Used in an Arrangement With Labyrinth Fins
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p.
122506
.10.1115/1.4025236
32.
Li
,
J.
,
Qiu
,
B.
, and
Feng
,
Z. P.
,
2012
, “
Experimental and Numerical Investigations on the Leakage Flow Characteristics of the Labyrinth Brush Seal
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102509
.10.1115/1.4007062
33.
Gresham
,
T. G.
,
Weaver
,
B. K.
,
Wood
,
H. G.
, and
Untaroiu
,
A.
,
2016
, “
Characterization of Brush Seal Permeability
,”
ASME Paper No. GT2016-57910.
10.1115/GT2016-57910
34.
Dogu
,
Y.
, and
Aksit
,
M. F.
,
2006
, “
Effects of Geometry on Brush Seal Pressure and Flow Fields—Part II: Backing Plate Configurations
,”
ASME J. Turbomach.
,
128
(
2
), pp.
379
389
.10.1115/1.2101858
You do not currently have access to this content.