Abstract

High-performance turbomachinery favors annular seals with a large damping coefficient to ensure rotor system stability. Pocket damper seals (PDSs), a variation of labyrinth seals with axial blades (ribs) and adding circumferential partition walls (ridges), produce a favorable damping performance. To further enhance the damping characteristic and reduce leakage, a novel stepped shaft PDS is hereby introduced. The invention has a unique arrangement of steps on the rotor surface, each facing an upstream rib in a pocket row. Thus, the step and a blade tip form a tight clearance (c1), while the rotor surface and the downstream blade tip make a larger clearance (c2). The convergence–divergence variation of cross-sectional areas along the flow direction increases the PDS damping coefficient. To validate the performance of the novel design, a stepped shaft PDS (c1/c2 = 0.5) with four axial ribs and eight circumferential pockets is built and tested. A comprehensive investigation, experimental and computational, produces the seal leakage and dynamic force coefficients for the stepped shaft PDS, as well as similar performance characteristics for an identical PDS with a smooth rotor surface (c1/c2 = 1, i.e., a uniform clearance PDS). The stepped shaft PDS operates with air at supply pressure (PS) ranging from 1.1 bar to 3.2 bar. The measured leakage for the stepped shaft PDS is 50% of that for the uniform clearance PDS. Computational fluid dynamics (CFD) and bulk flow model (BFM) predictions of leakage agree well with the test data. For PS = 2.3 bar, the test damping coefficient (C) for the stepped shaft PDS is ~1.5 times greater than the one for the uniform clearance PDS. With an increase in PS to 3.2 bar, the stepped shaft PDS shows a two and one half increase in damping coefficient. In comparison to the test data, a CFD model overestimates C by 29% for operation at PS = 3.2 bar, though capturing the variation trend versus whirl frequency. The BFM largely underpredicts C for the stepped shaft PDS and is abandoned for future work. Both the test data and CFD predictions demonstrate the superior damping performance of the stepped shaft PDS, thus providing a novel alternative seal configuration for turbomachinery usage.

References

1.
Childs
,
D. W.
, and
Vance
,
J. M.
,
1997
, “
Annular Gas Seals and Rotordynamics of Compressors and Turbines
,”
Proceedings of 26th Turbomachinery Symposium
,
College Station, TX
, pp.
201
220
.10.21423/R1HT06
2.
Vance
,
J. M.
, and
Schultz
,
R. R.
,
1993
, “
A New Damper Seal for Turbomachinery
,”
14th Biennial ASME Design Technical Conference on Mechanical Vibration and Noise
,
Albuquerque, NM
,
Sept. 19–23
, pp. 139–148.https://www.tib.eu/en/search/id/BLCP%3ACN000551491/A-New-Damper-Seal-for-Turbomachinery/
3.
Vance
,
J. M.
, and
Shultz
,
R. R.
,
1993
, “
Modulated Pressure Damper Seals
,” U.S. Patent 5794942A.
4.
Vance
,
J. M.
, and
Li
,
J.
,
1996
, “
Test Results of a New Damper Seal in Vibration Reduction in Turbomachinery
,”
ASME J. Eng. Gas Turb. Power
,
118
(
4
), pp.
843
846
.10.1115/1.2817004
5.
Benckert
,
H.
, and
Wachter
,
J.
,
1980
, “
Flow Induced Spring Coefficients of Labyrinth Seals for Application in Rotor Dynamics
,”
Proceedings of a Workshop on Rotordynamic Instability Problems in High-Performance Turbomachinery
,
Texas A & M University, College Station
,
TX
, NASA Accession No. 80N29717, pp.
189
212
.https://www.semanticscholar.org/paper/Flow-Induced-Spring-Coefficients-of-Labyrinth-Seals-Benckert-Wachter/0334f9c5f767102b0aff7cce4491729162a15e7f
6.
Ransom
,
D.
,
Li
,
J.
,
AndréS
,
L. S.
, and
Vance
,
J.
,
1999
, “
Experimental Force Coefficients for a Two-Bladed Labyrinth Seal and a Four-Pocket Damper Seal
,”
ASME J. Tribol.
,
121
(
2
), pp.
370
376
.10.1115/1.2833949
7.
Shultz
,
R. R.
, and
Vance
,
J. M.
,
1996
, “
Pressure Damper Diverging Labyrinth Seals With Circumferential Partitions, and Method of Sealing
,” U.S. Patent 5540447.http://hdl.handle.net/1969.1/176544
8.
Ertas
,
B.
,
Gamal
,
A.
, and
Vance
,
J.
,
2006
, “
Rotordynamic Force Coefficients of Pocket Damper Seals
,”
ASME J. Turbomach.
,
128
(
4
), pp.
725
737
.10.1115/1.2221327
9.
Li
,
J.
,
Kushner
,
F.
, and
DeChoudhury
,
P.
,
2002
, “
Experimental Evaluation of Slotted Pocket Damper Seals on a Rotating Test Rig
,”
ASME
Paper No. Gt2002-30634
. 10.1115/Gt2002-30634
10.
Ertas
,
B. H.
, and
Vance
,
J. M.
,
2007
, “
Rotordynamic Force Coefficients for a New Damper Seal Design
,”
ASME J. Tribol.
,
129
(
2
), pp.
365
374
.10.1115/1.2464138
11.
Vance
,
J. M.
,
Cardon
,
B. P.
,
San Andrés
,
L.
, and
Storace
,
A. F.
,
1993
, “
A Gas-Operated Bearing Damper for Turbomachinery
,”
ASME J. Eng. Gas Turb. Power
,
115
(
2
), pp.
383
389
.10.1115/1.2906720
12.
Li
,
J.
,
San AndréS
,
L.
, and
Vance
,
J.
,
1999
, “
A Bulk-Flow Analysis of Multiple-Pocket Gas Damper Seals
,”
ASME J. Eng. Gas Turb. Power
,
121
(
2
), pp.
355
363
.10.1115/1.2817128
13.
Li
,
J.
,
Ransom
,
D.
,
San AndréS
,
L.
, and
Vance
,
J.
,
1999
, “
Comparison of Predictions With Test Results for Rotordynamic Coefficients of a Four-Pocket Gas Damper Seal
,”
ASME J. Tribol.
,
121
(
2
), pp.
363
369
.10.1115/1.2833948
14.
Li
,
J.
,
Aguilar
,
R.
,
AndréS
,
L. S.
, and
Vance
,
J. M.
,
2000
, “
Dynamic Force Coefficients of a Multiple-Blade, Multiple-Pocket Gas Damper Seal: Test Results and Predictions
,”
ASME J. Tribol.
,
122
(
1
), pp.
317
322
.10.1115/1.555360
15.
Cangioli
,
F.
,
Vannini
,
G.
, and
Chirathadam
,
T.
,
2020
, “
A Novel Bulk-Flow Model for Pocket Damper Seals
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011012
.10.1115/1.4045000
16.
Vannini
,
G.
,
Cioncolini
,
S.
,
Del Vescovo
,
G.
, and
Rovini
,
M.
,
2014
, “
Labyrinth Seal and Pocket Damper Seal High Pressure Rotordynamic Test Data
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p.
022501
.10.1115/1.4025360
17.
Li
,
J.
,
Li
,
Z.
, and
Feng
,
Z.
,
2012
, “
Investigations on the Rotordynamic Coefficients of Pocket Damper Seals Using the Multi-Frequency, One-Dimensional, Whirling Orbit Model and RANS Solutions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102510
.10.1115/1.4007063
18.
Li
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2015
, “
Numerical Investigations on the Leakage and Rotordynamic Characteristics of Pocket Damper Seals Part II: Effects of Partition Wall Type, Partition Wall Number, and Cavity Depth
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032504
.10.1115/1.4028374
19.
Yang
,
J.
,
San Andrés
,
L.
, and
Lu
,
X.
,
2019
, “
Leakage and Dynamic Force Coefficients of a Pocket Damper Seal Operating Under a Wet Gas Condition: Tests Vs. Predictions
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111001
.10.1115/1.4044307
20.
Vannini
,
G.
,
Bertoneri
,
M.
,
Nielsen
,
K. K.
,
Ludiciani
,
P.
, and
Stronach
,
R.
,
2016
, “
Experimental Results and Computational Fluid Dynamics Simulations of Labyrinth and Pocket Damper Seals for Wet Gas Compression
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
052501
.10.1115/1.4031530
21.
Lu
,
X.
,
Yang
,
J.
, and
San Andrés
,
L.
,
2018
, “
A Stepped Shaft and Pocket Damper Seal Assembly
,” Provisional Patent No. TAMUS 4990, CR 2238–12000.
22.
Pross
,
J.
,
Kramer
,
T.
, and
Waltke
,
U.
,
2002
, “
Labyrinth Seal for Rotating Shaft
,” U.S. Patent 20020006330 A1.
23.
Li
,
J.
, and
Choudhury
,
P. D.
,
2006
, “
Hybrid Abradable Labyrinth Damper Seal
,” US. Patent 2006/0267289 A1.
24.
Li
,
J.
, and
Choudhury
,
P. D.
,
2007
, “
Stepped Labyrinth Damper Seal
,” U.S. Patent 2007/0069477 A1.
25.
Nakaniwa
,
A.
, and
Fukao
,
S.
,
2014
, “
Seal Device
,” U.S. Patent 20140175754 A1.
26.
Gupta
,
M. K.
,
Nove
,
S.
,
Soulas
,
T.
,
Ramesh
,
K.
, and
Grosso
,
G.
,
2018
, “
Interlocking Hole Pattern Seal
,” U.S. Patent 9909440 B2.
27.
Childs
,
D. W.
,
2013
,
Turbomachinery Rotordynamics With Case Studies
, 1st ed.,
Minter Spring Pubs
,
College Station, TX
, pp.
397
451
.
28.
San Andrés
,
L.
,
Lu
,
X.
, and
Liu
,
Q.
,
2016
, “
Measurements of Flow Rate and Force Coefficients in a Short-Length Annular Seal Supplied With a Liquid/Gas Mixture (Stationary Journal)
,”
Tribol. Trans.
,
59
(
4
), pp.
758
767
.10.1080/10402004.2015.1102370
29.
San Andrés
,
L.
, and
Lu
,
X.
,
2018
, “
Leakage, Drag Power and Rotordynamic Force Coefficients of an Air in Oil (Wet) Annular Seal
,”
ASME J. Eng. Gas Turbine Power
,
140
(
1
), p.
012505
.10.1115/1.4037622
30.
ANSYS
,
2016
, “
ANSYS Fluent User's Guide 17.2
,”
ANSYS
,
Canonsburg, PA
.
31.
San Andrés
,
L.
,
Yang
,
J.
, and
Lu
,
X.
,
2019
, “
On the Leakage, Torque and Dynamic Force Coefficients of an Air in Oil (Wet) Annular Seal: A Computational Fluid Dynamics Analysis Anchored to Test Data
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021008
.10.1115/1.4040766
32.
Yang
,
J.
, and
San Andrés
,
L.
,
2019
, “
On the Influence of the Entrance Section on the Rotordynamic Performance of a Pump Seal With Uniform Clearance: A Sharp Edge Vs. a Round Inlet
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031029
.10.1115/1.4040742
You do not currently have access to this content.