Abstract

The sealant flow and rim seal at the periphery of cavities formed between rotor and stator disks prevent the high-temperature gas from ingesting into disk cavities and reduce the use of secondary air bleeding from a compressor. The unsteady sealing performance of rim seal and the cooling characteristics of sealant flow on endwall of a 1.5-stage axial turbine are studied by solving the three-dimensional unsteady Reynolds-averaged Navier–Stokes (URANS) equations via shear stress transfer (SST) turbulence model. Besides, mass transfer analogy is introduced to predict the sealant distribution which makes the numerical sealing effectiveness in front and aft cavities agree well with experimental data. The accuracy of the numerical method is verified. The sealing effectiveness in cavities and the flow field in rim seal clearance are analyzed, and the film cooling performance on endwall is explored. The results show that, compared with Φ0=0.0170, the area-averaged sealing effectiveness εc on stator face is increased by 19.05% when Φ0=0.500 in the front cavity, and compared with Φ0=0.0042, the area-averaged sealing effectiveness εc on stator face is increased by 9.82% when Φ0=0.096 in the aft cavity. The nonaxisymmetric pressure on the endwall near rim seal and Kelvin Helmholtz unstable vortices arise due to the circumferential velocity difference between main flow and cavity flow. The flow field in the rim seal clearance is jointly affected by these two factors. The flow pattern in the front rim seal clearance is mainly affected by unstable vortex while the flow pattern in the aft rim seal clearance depends on the circumferential pressure distribution. According to FFT, the most significant frequency of flow field variety is about 1200 Hz and 400 Hz (corresponding to two and six blades passing periods) in front and aft rim seals, respectively. The time-averaged cooling effectiveness increases with the increase of sealant flow on endwall and decreases gradually in the axial direction. The unsteady flow behavior of cooling effectiveness on endwall is also discussed in detail.

References

1.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2016
, “
Review of Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
120801
.10.1115/1.4033938
2.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems—Part 1: The Behavior of Simple Shrouded Rotating-Disk Systems in a Quiescent Environment
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
98
105
.10.1016/0142-727X(88)90060-4
3.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems—Part 2: The Performance of Simple Seals in a Quasi-Axisymmetric External Flow
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
106
112
.10.1016/0142-727X(88)90061-6
4.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems—Part 3: The Effect of Nonaxisymmetric External Flow on Seal Performance
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
113
117
.10.1016/0142-727X(88)90062-8
5.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part I: Externally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021012
.10.1115/1.4006609
6.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2011
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part II: Rotationally-Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021013
.
7.
Patinios
,
M.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2017
, “
Measurements and Modeling of Ingress in a New 1.5-Stage Turbine Research Facility
,”
ASME J. Gas Turbines Power
,
139
(
1
), p.
012603
.10.1115/1.4034240
8.
Berdanier
,
R. A.
,
DeShong
,
E. T.
,
Thole
,
K. A.
, and
Robak
,
C.
,
2021
, “
Evaluating the Effects of Transient Purge Flow on Stator-Rotor Seal Performance
,”
ASME J. Turbomach.
,
143
(
2
), p.
021006
.10.1115/1.4048023
9.
Monge-Concepción
,
I.
,
Berdanier
,
R. A.
,
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Robak
,
C.
,
2020
, “
Evaluating the Effect of Vane Trailing Edge Flow on Turbine Rim Sealing
,”
ASME J. Turbomach.
,
142
(
8
), p.
081001
.10.1115/1.4047611
10.
Monge-Concepción
,
I.
,
Siroka
,
S.
,
Berdanier
,
R. A.
,
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Robak
,
C.
,
2022
, “
Influence of Vane Trailing Edge Flow on the Formation of Cavity Cells and Rim Sealing
,”
ASME J. Turbomach.
,
144
(
6
), p.
061014
.10.1115/1.4054281
11.
Childs
,
P. R. N.
,
2011
,
Rotating Flow
,
Butterworth-Heinemann
,
Oxford, UK
.
12.
Johnson
,
B. V.
,
Mack
,
G. J.
,
Paolillo
,
R. E.
, and
Daniels
,
W. A.
,
1994
, “
Turbine Rim Seal Gas Path Flow Ingestion Mechanisms
,”
AIAA
Paper No. AIAA 94-2703. 10.2514/6.94-2703
13.
Johnson
,
B. V.
,
Jakoby
,
R.
,
Bohn
,
D. E.
, and
Cunat
,
D.
,
2009
, “
A Method for Estimating the Influence of Time-Dependent Vane and Blade Pressure Fields on Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
131
(
2
), p.
021005
.10.1115/1.2950053
14.
Johnson
,
B. V.
,
Wang
,
C. Z.
, and
Roy
,
R. P.
,
2008
, “
A Rim Seal Orifice Model With 2 Cds and Effects of Swirl in Seals
,”
ASME
Paper No. GT2008-50650.10.1115/GT2008-50650
15.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part I: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031005
.10.1115/1.4001177
16.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part II: Externally Induced and Combined Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031006
.10.1115/1.4001178
17.
Zhou
,
K.
,
Wood
,
S. N.
, and
Owen
,
J. M.
,
2013
, “
Statistical and Theoretical Models of Ingestion Through Turbine Rim Seals
,”
ASME J. Turbomach.
,
135
(
2
), p.
021014
.10.1115/1.4006601
18.
Teuber
,
R.
,
Li
,
Y. S.
,
Maltson
,
J. D.
,
Wilson
,
M.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2013
, “
Computational Extrapolation of Turbine Sealing Effectiveness From Test Rig to Engine Conditions
,”
Proc. Inst. Mech. Eng., Part A
,
227
(
2
), pp.
167
178
.10.1177/0957650912466657
19.
Horwood
,
J.
,
Hualca
,
F.
,
Scobie
,
J.
,
Wilson
,
M.
,
Sangan
,
C.
, and
Lock
,
G.
,
2018
, “
Experimental and Computational Investigation of Flow Instabilities in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011028
.10.1115/1.4041115
20.
Jakoby
,
R.
,
Zierer
,
T.
,
Lindblad
,
K.
,
Larsson
,
J.
,
deVito
,
L.
,
Bohn
,
D. E.
,
Funcke
,
J.
, and
Decker
,
A.
,
2004
, “
Numerical Simulation of the Unsteady Flow Field in an Axial Gas Turbine Rim Seal Configuration
,”
ASME
Paper No. GT2004-53829. 10.1115/GT2004-53829
21.
O'Mahoney
,
T. S. D.
,
Hills
,
N. J.
,
Chew
,
J. W.
, and
Scanlon
,
T.
,
2011
, “
Large-Eddy Simulation of Rim Seal Ingestion
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
12
), pp.
2881
2891
.10.1177/0954406211409285
22.
Gao
,
F.
, and
Chew
,
J. W.
,
2021
, “
Evaluation and Application of Advanced CFD Models for Rotating Disc Flows
,”
Proc. Inst. Mech. Eng., Part C
,
235
(
23
), pp.
6847
6864
.10.1177/09544062211013850
23.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
ASME
Paper No. GT2017-63205. 10.1115/GT2017-63205
24.
Roy
,
A.
,
Blot
,
D. M.
,
Ekkad
,
S. V.
,
Ng
,
W. F.
,
Lohaus
,
A. S.
, and
Crawford
,
M. E.
,
2013
, “
Effect of Upstream Purge Slot on a Transonic Turbine Blade Passage: Part 2—Heat Transfer Performance
,”
ASME
Paper No. GT2013-94581. 10.1115/GT2013-94581
25.
Zhang
,
K. Y.
,
Li
,
J.
,
Li
,
Z. G.
, and
Song
,
L. M.
,
2019
, “
Effects of Simulated Swirl Purge Flow and Mid-Passage Gap Leakage on Turbine Blade Platform Cooling and Suction Surface Phantom Cooling Performance
,”
J. Int. Heat Mass Transfer
,
129
, pp.
618
634
.10.1016/j.ijheatmasstransfer.2018.09.111
26.
Barigozzi
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
,
Maritano
,
M.
, and
Abram
,
R.
,
2013
, “
Influence of Purge Flow Injection Angle on the Aerothermal Performance of a Rotor Blade Cascade
,”
ASME J. Turbomach.
,
136
(
4
), p.
041012
.10.1115/1.4025168
27.
Schobeiri
,
M. T.
,
Lu
,
K.
, and
Han
,
J. C.
,
2012
, “
Numerical Investigation of the Effect of Purge Flow on Aerodynamic Performance and Film Cooling Effectiveness on a Rotating Turbine With Non-Axisymmetric Endwall Contouring
,”
ASME
Paper No. GT2012-69069. 10.1115/GT2012-69069
28.
Yang
,
H.
,
Gao
,
Z.
,
Chen
,
H. C.
,
Han
,
J. C.
, and
Schobeiri
,
M. T.
,
2009
, “
Prediction of Film Cooling and Heat Transfer on a Rotating Blade Platform With Stator-Rotor Purge and Discrete Film-Hole Flows in a 1-1/2 Turbine Stage
,”
ASME J. Turbomach.
,
131
(
4
), p.
041003
.10.1115/1.3068325
29.
Chen
,
A. F.
,
Shiau
,
C. C.
, and
Han
,
J. C.
,
2017
, “
Turbine Blade Platform Film Cooling With Simulated Swirl Purge Flow and Slashface Leakage Conditions
,”
ASME J. Turbomach.
,
139
(
3
), p.
031012
.10.1115/1.4034985
30.
Du
,
K.
, and
Li
,
J.
,
2016
, “
Numerical Study on the Effects of Slot Injection Configuration and Endwall Alignment Mode on the Film Cooling Performance of Vane Endwall
,”
Int. J. Heat Mass Transfer
,
98
, pp.
768
777
.10.1016/j.ijheatmasstransfer.2016.02.014
31.
Scobie
,
J. A.
,
Hualca
,
F.
,
Patinios
,
M.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2018
, “
Re-Ingestion of Upstream Egress in a 1.5-Stage Gas Turbine Rig
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), p.
072507
.10.1115/1.4038361
You do not currently have access to this content.