Abstract

Energy addition using a hot surface ignition device is required for reliable ignition of aircraft compression ignition engines running on fuel variations and at altitude conditions. Thus, durability of the hot surface ignition device is crucial for application in these engines. Thermomechanical stress is one of the key parameters that determine durability, which requires an accurate prediction of the transient temperature field based on well-defined boundary conditions representing the dynamic and complex fluid flow inside engines. To meet this requirement, the present study focuses on transient thermomechanical stress analysis using a sequentially coupled computational fluid dynamics (CFD)–finite element analysis (FEA) approach to understand transient thermomechanical responses of the hot surface ignition device. A three-dimensional transient reacting flow simulation was conducted first using converge software, the results of which were exported to map thermal and pressure boundary conditions onto a structural finite element mesh. Transient thermomechanical stress analysis was performed sequentially using abaqus software utilizing the mapped boundary conditions. The results such as transient temperature history, resultant thermomechanical stress, displacement, potential failure modes, etc., were critically reviewed, which can provide helpful information for further design improvement.

References

1.
U.S. Department of Defense
,
2004
, “
DoD Management Policy for Energy Commodities and Related Services Section 4.2: Fuel Standardization
,” U.S. Department of Defense, Washington, DC, Directive No. 4140.25.
2.
Kim
,
K. S.
,
Szedlmayer
,
M. T.
,
Kweon
,
C.-B. M.
,
Kruger
,
K. M.
,
Gibson
,
J. A.
,
Lindsey
,
C. A.
,
Meininger
,
R. D.
,
Musser
,
M. R.
, and
Giddings
,
A. V.
,
2017
, “
The Effect of Outside Air Temperature and Cetane Number on Combustion and Performance in a UAV Diesel Engine at Various Altitude Conditions
,”
AIAA
Paper No. 2017-5027. 10.1115/2017-5027
3.
Szedlmayer
,
M. T.
,
Kim
,
K. S.
,
Kweon
,
C.-B. M.
,
Kruger
,
K. M.
,
Gibson
,
J. A.
,
Lindsey
,
C. A.
,
Meininger
,
R. D.
,
Musser
,
M. R.
, and
Giddings
,
A. V.
,
2017
, “
The Effect of Fuel Aromatic Content on Combustion in a UAV Diesel Engine
,”
AIAA
Paper No. 2017-5029. 10.2514/6.2017-5029
4.
Ryu
,
J. I.
,
Motily
,
A. H.
,
Lee
,
T.
,
Scarcelli
,
R.
,
Som
,
S.
,
Kim
,
K. S.
, and
Kweon
,
C.-B. M.
,
2020
, “
Ignition Enhancement of F-24 Jet Fuel by a Hot Surface for Aircraft Propulsion Systems
,”
AIAA
Paper No. 2020-2142.10.2514/6.2020-2142
5.
Dixon
,
J. A.
,
Verdicchio
,
J. A.
,
Benito
,
D.
,
Karl
,
A.
, and
Tham
,
K. M.
,
2004
, “
Recent Developments in Gas Turbine Component Temperature Prediction Methods, Using Computational Fluid Dynamics and Optimization Tools, in Conjunction With More Conventional Finite Element Analysis Techniques
,”
Proc. Inst. Mech. Eng., Part A
,
218
(
4
), pp.
241
255
.10.1243/0957650041200641
6.
Bielecki
,
M.
,
Karcz
,
M.
,
Radulski
,
W.
, and
Badur
,
J.
,
2001
, “
Thermo-Mechanical Coupling Between the Flow of Steam and Deformation of the Valve During Start-Up of the 200 MW Turbine
,”
Task Q.
,
5
(
2
), pp.
125
140
.https://www.imp.gda.pl/fileadmin/doc/o2/z3/publications/2001_02_Thermo-Mechanical%20Coupling.pdf
7.
Diefenthal
,
M.
,
Łuczyński
,
P.
,
Rakut
,
C.
,
Wirsum
,
M.
, and
Heuer
,
T.
,
2017
, “
Thermomechanical Analysis of Transient Temperatures in a Radial Turbine Wheel
,”
ASME J. Turbomach.
,
139
(
9
), p.
091001
.10.1115/1.4036104
8.
Amirante
,
D.
,
Hills
,
N. J.
, and
Barnes
,
C. J.
,
2012
, “
Thermo-Mechanical Finite Element Analysis/Computational Fluid Dynamics Coupling of an Interstage Seal Cavity Using Torsional Spring Analogy
,”
ASME J. Turbomach.
,
134
(
5
), p.
051015
.10.1115/1.4004259
9.
Luo
,
X.
,
Zeng
,
X.
,
Zou
,
P.
,
Lin
,
Y.
,
Wei
,
T.
,
Yuan
,
X.
, and
Liao
,
S.
,
2019
, “
A Finite Element Analysis-Computational Fluid Dynamics Coupled Analysis on Thermal-Mechanical Fatigue of Cylinder Head of a Turbo-Charged Diesel Engine
,”
Procedia Manuf.
,
41
, pp.
795
802
.10.1177/0954407019890481
10.
Fadaei
,
M.
,
Vafadar
,
H.
, and
Noorpoor
,
A.
,
2011
, “
New Thermo-Mechanical Analysis of Cylinder Heads Using a Multi-Field Approach
,”
Sci. Iran.
,
18
(
1
), pp.
66
74
.10.1016/j.scient.2011.03.009
11.
Belhocine
,
A.
, and
Bouchetara
,
M.
,
2013
, “
Thermal–Mechanical Coupled Analysis of a Brake Disk Rotor
,”
Heat Mass Transfer
,
49
(
8
), pp.
1167
1179
.10.1007/s00231-013-1161-8
12.
Tang
,
J.
,
Bryant
,
D.
, and
Qi
,
H.
,
2014
, “Coupled CFD and FE Thermal Mechanical Simulation of Disc Brake,”
EuroBrake 2014
,
Lille, France
, May 13–15, p.
10
.https://www.researchgate.net/publication/274025718_COUPLED_CFD_AND_FE_THERMAL_MECHANICAL_SIMULATION_OF_DISC_BRAKE
13.
Belhocine
,
A.
, and
Afzal
,
A.
,
2020
, “
A Predictive Tool to Evaluate Braking System Performance Using a Fully Coupled ThermoMechanical Finite Element Model
,”
Int. J. Interact. Des. Manuf.
,
14
(
1
), pp.
225
253
.10.1007/s12008-020-00650-3
14.
Wang
,
L.
,
Zheng
,
C.
,
Wei
,
S.
,
Wang
,
B.
, and
Wei
,
Z.
,
2015
, “
Thermo-Mechanical Investigation of Composite High-Pressure Hydrogen Storage Cylinder During Fast Filling
,”
Int. J. Hydrogen Energy
,
40
(
21
), pp.
6853
6859
.10.1016/j.ijhydene.2015.04.018
15.
Stender
,
M. E.
,
Beghini
,
L. L.
,
Sugar
,
J. D.
,
Veilleux
,
M. G.
,
Subia
,
S. R.
,
Smith
,
T. R.
,
Marchi
,
C. W. S.
,
Brown
,
A. A.
, and
Dagel
,
D. J.
,
2017
, “
Thermal Mechanical Finite Element Simulation of Additive Manufacturing: Process Modeling of the Lens Process
,”
ASME
Paper No. PVP2017-65992. 10.1115/PVP2017-65992
16.
Mian
,
H. H.
,
Wang
,
G.
, and
Ye
,
Z.-Y.
,
2014
, “
Numerical Investigation of Structural Geometric Nonlinearity Effect in High-Aspect-Ratio Wing Using CFD/CSD Coupled Approach
,”
J. Fluids Struct.
,
49
, pp.
186
201
.10.1016/j.jfluidstructs.2014.04.011
17.
Peksen
,
M.
,
2014
, “
3D Transient Multiphysics Modelling of a Complete High Temperature Fuel Cell System Using Coupled CFD and FEM
,”
Int. J. Hydrogen Energy
,
39
(
10
), pp.
5137
5147
.10.1016/j.ijhydene.2014.01.063
18.
Kanellos
,
P.
,
Karkalos
,
N. E.
, and
Markopoulos
,
A. P.
,
2019
, “
Numerical Simulation of Machining Using a Coupled FEM-CFD Approach
,”
Procedia Manuf.
,
41
, pp.
795
802
.10.1016/j.promfg.2019.09.072
19.
Motily
,
A. H.
,
Ryu
,
J. I.
,
Kim
,
Y.
,
Kim
,
K. S.
,
Lee
,
T.
, and
Kweon
,
C.-B. M.
,
2020
, “
Effects of Cetane Number on High-Pressure Fuel Spray Characteristics With a Hot Surface Ignition Source
,”
AIAA
Paper No. 2020-2280.10.1115/2020-2280
20.
Ryu
,
J. I.
,
Motily
,
A. H.
,
Lee
,
T.
,
Scarcelli
,
R.
,
Som
,
S.
,
Kim
,
K. S.
, and
Kweon
,
C.-B. M.
,
2020
, “
Ignition of Jet Fuel Assisted by a Hot Surface at Aircraft Compression Ignition Engine Conditions
,”
AIAA
Paper No. 2020-3889. 10.1115/2020-3889
21.
Ryu
,
J. I.
,
Motily
,
A. H.
,
Lee
,
T.
,
Scarcelli
,
R.
,
Som
,
S.
,
Kim
,
K. S.
, and
Kweon
,
C.-B. M.
,
2021
, “
Effect of Hot Probe Temperature on Ignition of Alcohol-to-Jet (ATJ) Fuel Spray Under Aircraft Propulsion System Conditions
,”
AIAA
Paper No. 2021-0985.10.1115/2021-0985
22.
Motily
,
A. H.
,
Wood
,
E.
,
Ryu
,
J. I.
,
Kim
,
K. S.
,
Lee
,
T.
, and
Kweon
,
C.-B. M.
,
2021
, “
Optimizing Hot-Surface-Assisted Ignition Performance of High-Pressure F-24 Fuel Sprays
,”
AIAA
Paper No. 2021-0414. 10.1115/2021-0414
23.
Motily
,
A. H.
,
Ryu
,
J. I.
,
Kim
,
K.
,
Kim
,
K. S.
,
Kweon
,
C.-B. M.
, and
Lee
,
T.
,
2021
, “
High-Pressure Fuel Spray Ignition Behavior With Hot Surface Interaction
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5665
5672
.10.1016/j.proci.2020.08.041
24.
Kurman
,
M.
,
Bravo
,
L.
,
Kweon
,
C.-B.
, and
Tess
,
M.
,
2014
, “
The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions
,”
ILASS Americas 26th Annual Conference on Liquid Atomization and Spray Systems
, Portland, OR, May.
25.
Convergent Science
,
2021
, “
CONVERGE (3.0) [Computer Program]
,” Convergent Science, Madison, WI, accessed Mar. 31, 2021, https://convergecfd.com
26.
Ryu
,
J. I.
,
Kim
,
K.
,
Min
,
K.
,
Scarcelli
,
R.
,
Som
,
S.
,
Kim
,
K. S.
,
Temme
,
J. E.
,
Kweon
,
C.-B. M.
, and
Lee
,
T.
,
2021
, “
Data-Driven Chemical Kinetic Reaction Mechanism for F-24 Jet Fuel Ignition
,”
Fuel
,
290
, p.
119508
.10.1016/j.fuel.2020.119508
27.
Kim
,
K.
,
Ryu
,
J. I.
,
McGann
,
B.
,
Min
,
K.
,
Temme
,
J.
,
Kweon
,
C.-B. M.
, and
Lee
,
T.
,
2021
, “
Data-Driven Combustion Kinetic Modeling Concept of Alternative Alcohol-to-Jet (ATJ) Fuel
,”
AIAA
Paper No. 2021-1245. 10.1115/2021-1245
28.
Wang
,
H.
,
Xu
,
R.
,
Wang
,
K.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Davidson
,
D. F.
,
Brezinsky
,
K.
, and
Egolfopoulos
,
F. N.
,
2018
, “
A Physics-Based Approach to Modeling Real-Fuel Combustion Chemistry—I. Evidence From Experiments, and Thermodynamic, Chemical Kinetic and Statistical Considerations
,”
Combust. Flame
,
193
, pp.
502
519
.10.1016/j.combustflame.2018.03.019
29.
Xu
,
R.
,
Wang
,
K.
,
Banerjee
,
S.
,
Shao
,
J.
,
Parise
,
T.
,
Zhu
,
Y.
, and
Wang
,
S.
, et al.,
2018
, “
A Physics-Based Approach to Modeling Real-Fuel Combustion Chemistry—II. Reaction Kinetic Models of Jet and Rocket Fuels
,”
Combust. Flame
,
193
, pp.
520
537
.10.1016/j.combustflame.2018.03.021
30.
Takatsu
,
K.
,
2015
, “
Method for Manufacturing Ceramic Sheath-Type Glow Plug and Ceramic Sheath-Type Glow Plug
,” U. S. Patent No. US20170321899A1.
31.
Han
,
I.-S.
,
Seo
,
D.-W.
,
Kim
,
S.-Y.
,
Hong
,
K.-S.
,
Guahk
,
K. H.
, and
Lee
,
K. S.
,
2008
, “
Properties of Silicon Nitride for Aluminum Melts Prepared by Nitrided Pressureless Sintering
,”
J. Eur. Ceram. Soc.
,
28
(
5
), pp.
1057
1063
.10.1016/j.jeurceramsoc.2007.09.032
32.
Swab
,
J. J.
,
Wereszczak
,
A. A.
,
Tice
,
J.
,
Caspe
,
R.
,
Kraft
,
R. H.
, and
Adams
,
J. W.
,
2005
, “
Mechanical and Thermal Properties of Advanced Ceramics for Gun Barrel Applications
,” U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, Report No. ARL-TR-3417.
33.
ASME
,
2010
, “
ASME Boiler and Pressure Vessel Code: II Part D Properties (Metric) Materials
,” ASME, New York.
34.
Rogers
,
B. A.
,
Schoonover
,
I. C.
, and
Jordan
,
L.
,
1936
, Silver: Its Properties and Industrial Uses, U.S. National Bureau of Standards, Washington, DC.
35.
Dassault Systèmes
Simulia
,
Corporation
,
2019
, “
ABAQUS Analysis User's Manual
,”
Dassault Systèmes Simulia Corporation
,
Johnston, RI
.
36.
Motily
,
A. H.
,
2020
, “
Evaluation of Hot Surface Ignition Device Performance With High-Pressure Kerosene Fuel Sprays
,” MS dissertation,
University of Illinois at Urbana-Champaign, Champaign, IL
.
37.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
38.
Martins
,
C. S.
,
Steen
,
M.
,
Bressers
,
J.
, and
Rosa
,
L. G.
,
1992
, “
Characterization of the Flexural Strength Degradation of a Commercial Hot-Pressed Silicon Nitride in a High-Temperature Sulphidizing Environment
,”
Fract. Mech. Ceram.
,
10
, pp.
379
390
.10.1007/978-1-4615-3348-1_25
You do not currently have access to this content.