Abstract

Industrial gas turbines commonly use lean premixed swirl stabilized combustors that are prone to thermo-acoustic instabilities. Combustor testing involves several steps ranging from atmospheric to high-pressure conditions. An open outlet boundary condition is maintained for atmospheric tests commonly, whereas high-pressure testing involves complex exit boundary conditions, which change the reflection coefficient and can affect the nature of instability. Current work aims at studying how the change in outlet boundary affects the nature of instability due to changes in the exit reflection coefficient and acoustic mode shape inside the combustor. A laboratory-scale industrial swirl burner that uses partially premixed methane and air at atmospheric conditions is analyzed for this purpose. A constant area contraction ratio of 6.5:1 is maintained at the exit of the combustor while varying the inlet Reynolds number at a constant global equivalence ratio. Flame dynamics based on conditional phase averaged OH* chemiluminescence images and spatial Rayleigh index maps were used to compare different flow rate and exit boundary cases. The outlet contraction affects both the frequency and amplitude of the dominant thermoacoustic mode. The orifice plate at the exit reduces the outlet reflection coefficient leading to a change in acoustic mode shape inside the combustor. Overall, the instability amplitude is reduced considerably for cases with an orifice plates at the exit boundary compared to open exit boundary cases. The results show the importance of defining outlet boundary conditions as a parameter in combustion instability studies. Care should be taken while comparing and interpreting results from different facilities where outlet boundary condition is different.

References

1.
Lefebvre
,
A.
, and
Ballal
,
D.
,
2010
, “
Gas Turbine Combustion
,”
Alternate Fuels and Emissions
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
2.
Lieuwen
,
T.
, and
Yang
,
V.
,
2005
, “
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,” American Institute of Aeronautics and Astronautics, Danvers, MA.
3.
Keller
,
J. J.
,
1995
, “
Thermoacoustic Oscillations in Combustion Chambers of Gas Turbines
,”
AIAA J.
,
33
(
12
), pp.
2280
2287
.10.2514/3.12980
4.
Paschereit
,
C. O.
, and
Gutmark
,
E.
,
2006
, “
Active Control of Combustion Instabilities in Gas Turbine Burners
,”
Turbo Expo: Power for Land, Sea, and Air.
, 42363.https://www.academia.edu/22030530/Active_Control_of_Combustion_Instabilities_in_Gas_Turbine_Burners
5.
Richards
,
G. A.
,
Straub
,
D. L.
, and
Robey
,
E. H.
,
2003
, “
Passive Control of Combustion Dynamics in Stationary Gas Turbines
,”
J. Propuls. Power
,
19
(
5
), pp.
795
810
.10.2514/2.6195
6.
Dowling
,
A. P.
, and
Morgans
,
A. S.
,
2005
, “
Feedback Control of Combustion Oscillations
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
151
182
.10.1146/annurev.fluid.36.050802.122038
7.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2009
, “
Dynamic Phase Converter for Passive Control of Combustion Instabilities
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
3163
3170
.10.1016/j.proci.2008.05.051
8.
Zhao
,
D.
, and
Morgans
,
A. S.
,
2009
, “
Tuned Passive Control of Combustion Instabilities Using Multiple Helmholtz Resonators
,”
J. Sound Vib.
,
320
(
4–5
), pp.
744
757
.10.1016/j.jsv.2008.09.006
9.
Kim
,
K. T.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
Spatially Distributed Flame Transfer Functions for Predicting Combustion Dynamics in Lean Premixed Gas Turbine Combustors
,”
Combust. Flame
,
157
(
9
), pp.
1718
1730
.10.1016/j.combustflame.2010.04.016
10.
Cosic
,
B.
,
Bobusch
,
B. C.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
,
2012
, “
Open-Loop Control of Combustion Instabilities and the Role of the Flame Response to Two-Frequency Forcing
,”
ASME J. Eng. Gas Turbines Power
,
134
(
6
), p.
061502
.10.1115/1.4005986
11.
Rayleigh
,
J. W. S. B.
,
Rayleigh
,
1878
, “
The Explanation of Certain Acoustical Phenomena
,”
Nature
,
18
(
455
), pp.
319
321
.10.1038/018319a0
12.
Silva
,
C. F.
,
Merk
,
M.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2017
, “
The Contribution of Intrinsic Thermoacoustic Feedback to Combustion Noise and Resonances of a Confined Turbulent Premixed Flame
,”
Combust. Flame
,
182
, pp.
269
278
.10.1016/j.combustflame.2017.04.015
13.
Emmert
,
T.
,
Bomberg
,
S.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2017
, “
Acoustic and Intrinsic Thermoacoustic Modes of a Premixed Combustor
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3835
3842
.10.1016/j.proci.2016.08.002
14.
Liu
,
T.
,
Bai
,
F.
,
Zhao
,
Z.
,
Lin
,
Y.
,
Du
,
Q.
, and
Peng
,
Z.
,
2017
, “
Large Eddy Simulation Analysis on Confined Swirling Flows in a Gas Turbine Swirl Burner
,”
Energies
,
10
(
12
), p.
2081
.10.3390/en10122081
15.
Wu
,
Y.
,
Carlsson
,
C.
,
Szasz
,
R.
,
Peng
,
L.
,
Fuchs
,
L.
, and
Bai
,
X. S.
,
2016
, “
Effect of Geometrical Contraction on Vortex Breakdown of Swirling Turbulent Flow in a Model Combustor
,”
Fuel
,
170
, pp.
210
225
.10.1016/j.fuel.2015.12.035
16.
Terhaar
,
S.
,
Bobusch
,
B. C.
, and
Paschereit
,
C. O.
,
2012
, “
Effects of Outlet Boundary Conditions on the Reacting Flow Field in a Swirl-Stabilized Burner at Dry and Humid Conditions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
111501
.10.1115/1.4007165
17.
Yang
,
Y.
,
Wang
,
G.
,
Fang
,
Y.
,
Jin
,
T.
, and
Li
,
J.
,
2021
, “
Experimental Study of the Effect of Outlet Boundary on Combustion Instabilities in Premixed Swirling Flames
,”
Phys. Fluids
,
33
(
2
), p.
027106
.10.1063/5.0038984
18.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
O.
,
2015
, “
Increasing Flashback Resistance in Lean Premixed Swirl-Stabilized Hydrogen Combustion by Axial Air Injection
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071503
.10.1115/1.4029119
19.
Sreedeep
,
S.
,
Ramanan
,
V.
, and
Chakravarthy
,
S. R.
,
2020
, “
The Role of Closely Spaced Helical and Axial Disturbances in Exciting Beats in a Partially Premixed Swirl Combustor
,”
AIAA
Paper No. 2020–3892.10.2514/6.2020-3892
20.
Rajendram Soundararajan
,
P.
,
Vignat
,
G.
,
Durox
,
D.
,
Renaud
,
A.
, and
Candel
,
S.
,
2021
, “
Effect of Different Fuels on Combustion Instabilities in an Annular Combustor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p.
031007
.10.1115/1.4049702
21.
Lieuwen
,
T. C.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
, New York, pp.
154
198
.
22.
Sreedeep
,
S.
,
Ramanan
,
V.
,
Chakraborty
,
A.
, and
Chakravarthy
,
S. R.
,
2022
, “
The Effect of Multiple Coexisting Convective Modes in Determining Thermoacoustic Behavior of a Partially Premixed Swirl Flame
,”
ASME J. Eng. Gas Turbines Power
,
144
(
6
), p.
061009
.10.1115/1.4054014
23.
Murugesan
,
M.
,
Singaravelu
,
B.
,
Kushwaha
,
A. K.
, and
Mariappan
,
S.
,
2018
, “
Onset of Flame-Intrinsic Thermoacoustic Instabilities in Partially Premixed Turbulent Combustors
,”
Int. J. Spray Combust. Dyn.
,
10
(
3
), pp.
171
184
.10.1177/1756827718758511
24.
Seybert
,
A. F.
, and
Ross
,
D. F.
,
1977
, “
Experimental Determination of Acoustic Properties Using a Two-Microphone Random-Excitation Technique
,”
J. Acoust. Soc. Am.
,
61
(
5
), pp.
1362
1370
.10.1121/1.381403
25.
Bechert
,
D.
,
1980
, “
Sound Absorption Caused by Vorticity Shedding, Demonstrated With a Jet Flow
,”
J. Sound Vib.
,
70
(
3
), pp.
389
405
.10.1016/0022-460X(80)90307-7
26.
Peters
,
M. C. A. M.
,
Hirschberg
,
A.
,
Reijnen
,
A. J.
, and
Wijnands
,
A. P. J.
,
1993
, “
Damping and Reflection Coefficient Measurements for an Open Pipe at Low Mach and Low Helmholtz Numbers
,”
J. Fluid Mech.
,
256
, pp.
499
534
.10.1017/S0022112093002861
27.
Li
,
J.
,
Yang
,
D.
,
Luzzato
,
C.
, and
S.Morgans
,
A.
,
2015
, “
Open Source Combustion Instability Low Order Simulator (OSCILOS-Long) Technical Report
,”
Imperial College
,
London
, Report.https://www.researchgate.net/publication/273204533_Open_Source_Combustion_Instability_Low_Order_Simulator_OSCILOS-Long_Technical_report
28.
Yong
,
K. J.
,
Meindl
,
M.
,
Polifke
,
W.
, and
Silva
,
C. F.
,
2020
, “
Thermoacoustic Spectrum of a Swirled Premixed Combustor With Partially Reflecting Boundaries
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), 011005.10.1115/1.4045275
29.
Fredrich
,
D.
,
Jones
,
W. P.
, and
Marquis
,
A. J.
,
2021
, “
A Combined Oscillation Cycle Involving Self-Excited Thermo-Acoustic and Hydrodynamic Instability Mechanisms
,”
Phys. Fluids
,
33
(
8
), p.
085122
.10.1063/5.0057521
30.
Venkataraman
,
K. K.
,
Preston
,
L. H.
,
Simons
,
D. W.
,
Lee
,
B. J.
,
Lee
,
J. G.
, and
Santavicca
,
D. A.
,
1999
, “
Mechanism of Combustion Instability in a Lean Premixed Dump Combustor
,”
J. Propuls. Power
,
15
(
6
), pp.
909
918
.10.2514/2.5515
31.
Yu
,
K. H.
,
Trouvé
,
A.
, and
Daily
,
J. W.
,
1991
, “
Low-Frequency Pressure Oscillations in a Model Ramjet Combustor
,”
J. Fluid Mech.
,
232
(
-1
), p.
47
.10.1017/S0022112091003622
32.
Poinsot
,
T. J.
,
Trouve
,
A. C.
,
Veynante
,
D. P.
,
Candel
,
S. M.
, and
Esposito
,
E. J.
,
1987
, “
Vortex-Driven Acoustically Coupled Combustion Instabilities
,”
J. Fluid Mech.
,
177
, pp.
265
292
.10.1017/S0022112087000958
33.
Hermeth
,
S.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y.
,
Anisimov
,
V.
,
Cirigliano
,
C.
, and
Poinsot
,
T.
,
2014
, “
Bistable Swirled Flames and Influence on Flame Transfer Functions
,”
Combust. Flame
,
161
(
1
), pp.
184
196
.10.1016/j.combustflame.2013.07.022
34.
Stohr
,
M.
,
Yin
,
Z.
, and
Meier
,
W.
,
2017
, “
Interaction Between Velocity Fluctuations and Equivalence Ratio Fluctuations During Thermoacoustic Oscillations in a Partially Premixed Swirl Combustor
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3907
3915
.10.1016/j.proci.2016.06.084
35.
Schonborn
,
A.
,
Sayad
,
P.
, and
Klingmann
,
J.
,
2014
, “
Influence of Precessing Vortex Core on Flame Flashback in Swirling Hydrogen Flames
,”
Int. J. Hydrogen Energy
,
39
(
35
), pp.
20233
20241
.10.1016/j.ijhydene.2014.10.005
36.
Nair
,
V.
, and
Sujith
,
R.
,
2015
, “
A Reduced-Order Model for the Onset of Combustion Instability: Physical Mechanisms for Intermittency and Precursors
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3193
3200
.10.1016/j.proci.2014.07.007
You do not currently have access to this content.