Abstract

There seems to be a lack of clear and systematic understanding of physical behavior and mechanisms of mistuned blade rows, particularly in the context of the aerodynamic mistuning versus the structural (frequency) mistuning. A high-fidelity fully coupled method is desirable to investigate the vibration characteristics of aeroelasticity problems with strong fluid–structure interaction effects, as well as blade mistuning effects. In this work, the direct nonlinear time-domain fully coupled method is adopted to investigate the dynamics mechanism of a mistuned oscillating cascade. The main objectives are two-folds, first to elucidate the basic vibration characteristics of a mistuned blade row, and second to examine the aeroelastic effects of mistuning. Three conditions of interest are considered: (a) the structural mistuning only, (b) the aerodynamic mistuning only, and (c) a combination of the two. The present results show that first a mistuned configuration tends to vibrate with the same frequency and a predominantly constant interblade phase angle. Vibration amplitudes of the blades vary significantly with a strong mode localization effect for the structural mistuning. For the concurrent structural-aerodynamic mistuning, the localization is stronger than in the standalone structural mistuning case. Second, a monotonic increase of the aeroelastic stability with the structural mistuning magnitude is observed. On the other hand, the aerodynamically mistuned cascade shows a stabilizing effect with a small amount of mistuning but exhibits a destabilizing effect with a large mistuning. Furthermore, these results indicate a quite remarkable interplay between the structural and the aerodynamic mistuning. At a condition where the tuned cascade is still stable, an aero-mistuning induced unstable behavior is observed. An introduction of a large magnitude of frequency mistuning which would be stabilizing for a tuned cascade, is instead shown to have a destabilizing effect for the present combined aero-structural mistuning case.

References

1.
Ning
,
W.
, and
He
,
L.
,
1998
, “
Computation of Unsteady Flows Around Oscillating Blades Using Linear and Nonlinear Harmonic Euler Methods
,”
ASME J. Turbomach.
,
120
(
3
), pp.
508
514
.10.1115/1.2841747
2.
He
,
L.
, and
Ning
,
W.
,
1998
, “
Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
AIAA J.
,
36
(
11
), pp.
2005
2012
.10.2514/2.328
3.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.10.2514/2.1754
4.
Lane
,
F.
,
1956
, “
System Mode Shapes in the Flutter of Compressor Blade Rows
,”
J. Aeronaut. Sci.
,
23
(
1
), pp.
54
66
.10.2514/8.3502
5.
Brandstetter
,
C.
,
Duquesne
,
P.
,
Paoletti
,
B.
,
Aubert
,
S.
, and
Ottavy
,
X.
,
2019
, “
Project PHARE-2 – a High Speed UHBR Fan Test Facility for a New Open-Test Case
,”
ASME J. Turbomach.
,
141
(
10
), p.
101004
.10.1115/1.4043883
6.
Sadeghi
,
M.
, and
Liu
,
F.
,
2005
, “
Computation of Cascade Flutter by Uncoupled and Coupled Methods
,”
Int. J. Comput. Fluid Dyn.
,
19
(
8
), pp.
559
569
.10.1080/10618560500508367
7.
Carstens
,
V.
,
Kemme
,
R.
, and
Schmitt
,
S.
,
2003
, “
Coupled Simulation of Flow-Structure Interaction in Turbomachinery
,”
Aerosp. Sci. Technol.
,
7
(
4
), pp.
298
306
.10.1016/S1270-9638(03)00016-6
8.
Carstens
,
V.
, and
Belz
,
J.
,
2001
, “
Numerical Investigation of Nonlinear Fluid-Structure Interaction in Vibrating Compressor Blades
,”
ASME J. Turbomach.
,
123
(
2
), pp.
402
408
.10.1115/1.1354138
9.
Chahine
,
C.
,
Verstraete
,
T.
, and
He
,
L.
,
2019
, “
A Comparative Study of Coupled and Decoupled Fan Flutter Prediction Methods Under Variation of Mass Ratio and Blade Stiffness
,”
J. Fluids Struct.
,
85
, pp.
110
125
.10.1016/j.jfluidstructs.2018.12.009
10.
Sadeghi
,
M.
, and
Liu
,
F.
,
2007
, “
Investigation of Mistuning Effects on Cascade Flutter Using a Coupled Method
,”
AIAA J. Propul. Power
,
23
(
2
), pp.
266
272
.10.2514/1.18876
11.
Zhai
,
Y.
,
Bladh
,
R.
, and
Dyverfeldt
,
G.
,
2012
, “
Aeroelastic Stability Assessment of an Industrial Compressor Blade Including Mistuning Effects
,”
ASME J. Turbomach.
,
134
(
6
), p.
060903
10.1115/1.4007210
12.
Choi
,
B. K.
,
Lentz
,
J.
,
Rivas-Guerra
,
A. J.
, and
Mignolet
,
M. P.
,
2003
, “
Optimization of Intentional Mistuning Patterns for the Reduction of the Forced Response Effects of Unintentional Mistuning: Formulation and Assessment
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
131
140
.10.1115/1.1498270
13.
Castanier
,
M. P.
, and
Pierre
,
C.
,
2006
, “
Modeling and Analysis of Mistuned Bladed Disk Vibration – Current Status and Emerging Directions
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
384
396
.10.2514/1.16345
14.
Hoyniak
,
D.
, and
Fleeter
,
S.
,
1986
, “
The Effect of Circumferential Aerodynamic Detuning on Coupled Bending-Torsion Unstalled Supersonic Flutter
,”
ASME J. Turbomach.
,
108
(
2
), pp.
253
260
.10.1115/1.3262045
15.
Sladojevic
,
I.
,
Sayma
,
A. I.
, and
Imregun
,
M.
,
2007
, “
Influence of Stagger Angle Variation on Aerodynamic Damping and Frequency Shifts
,”
ASME
Paper No. GT2007-28166. 10.1115/GT2007-28166
16.
Ekici
,
K.
,
Kielb
,
R. E.
, and
Hall
,
K. C.
,
2010
, “
Aerodynamic Asymmetry Analysis of Unsteady Flows in Turbomachinery
,”
ASME J. Turbomach.
,
132
(
1
), p.
011006
.10.1115/1.3103922
17.
Ekici
,
K.
,
Kielb
,
R. E.
, and
Hall
,
K. C.
,
2013
, “
The Effect of Aerodynamic Asymmetries on Turbomachinery Flutter
,”
J. Fluids Struct.
,
36
, pp.
1
17
.10.1016/j.jfluidstructs.2012.08.009
18.
Miyakoyawa
,
T.
,
Kielb
,
R. E.
, and
Hall
,
K. C.
,
2009
, “
The Effects of Aerodynamic Perturbations on Forced Response of Bladed Disks
,”
ASME J. Turbomach.
,
131
(
4
), p.
041008
.10.1115/1.3068319
19.
Phan
,
H. M.
, and
He
,
L.
,
2021
, “
Efficient Steady and Unsteady Flow Modeling for Arbitrarily Mis-Staggered Bladerow Under Influence of Inlet Distortion
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071009
.10.1115/1.4050364
20.
Leng
,
Y.
, and
Key
,
N. L.
,
2020
, “
Effects of Nonuniform Blade Spacing on Compressor Rotor Forced Response and Aeroacoustics
,”
AIAA J. Propul. Power
,
36
(
5
), pp.
721
731
.10.2514/1.B37866
21.
Leng
,
Y.
, and
Key
,
N. L.
,
2021
, “
The Effects of Non-Uniform Blade Spacing on Compressor Rotor Flutter Stability
,”
AIAA J. Propul. Power
, 37(5), pp.
682
692
.10.2514/1.B37765
22.
Malzacher
,
L.
,
Schwarze
,
C.
,
Motta
,
V.
, and
Peitsch
,
D.
,
2019
, “
Experimental Investigation of an Aerodynamically Mistuned Oscillating Compressor Cascade
,”
ASME J. Turbomach.
,
141
(
7
), p.
071012
.10.1115/1.4043474
23.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
VöLker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables – Part I: Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
.10.1115/1.2184352
24.
Doi
,
H.
,
2002
, “
Fluid/Structure Coupled Aeroelastic Computations for Transonic Flows in Turbomachinery
,”
ASME
Paper No. GT2002-30313. 10.1115/GT2002-30313
25.
Vahdati
,
M.
,
Simpson
,
G.
, and
Imregun
,
M.
,
2011
, “
Mechanisms for Wide-Chord Fan Blade Flutter
,”
ASME J. Turbomach.
,
133
(
4
), p.
041029
.10.1115/1.4001233
26.
Im
,
H. S.
, and
Zha
,
G. C.
,
2012
, “
Simulation of Non-Synchronous Blade Vibration of an Axial Compressor Using a Fully Coupled Fluid/Structure Interaction
,”
ASME
Paper No. GT2012-68150. 10.1115/GT2012-68150
27.
Corral
,
R.
, and
Gallardo
,
J. M.
,
2014
, “
Nonlinear Dynamics of Bladed Disks With Multiple Unstable Modes
,”
AIAA J.
,
52
(
6
), pp.
1124
1132
.10.2514/1.J051812
28.
He
,
L.
,
1994
, “
Integration of 2-D Fluid/Structure Coupled System for Calculations of Turbomachinery Aerodynamic/Aeroelastic Instabilities
,”
Int. J. Comput. Fluid Dyn.
,
3
(
3–4
), pp.
217
231
.10.1080/10618569408904508
29.
Elazar
,
Y.
, and
Shreeve
,
R. P.
,
1990
, “
Viscous Flow in a Controlled Diffusion Compressor Cascade With Increasing Incidence
,”
ASME J. Turbomach.
,
112
(
2
), pp.
256
265
.10.1115/1.2927642
30.
Yang
,
H.
, and
He
,
L.
,
2004
, “
Experimental Study on Linear Compressor Cascade With Three-Dimensional Blade Oscillation
,”
AIAA J. Propul. Power
,
20
(
1
), pp.
180
188
.10.2514/1.1280
31.
Phan
,
H. M.
, and
He
,
L.
,
2020
, “
Validation Studies of Linear Oscillating Compressor Cascade and Use of Influence Coefficient Method
,”
ASME J. Turbomach.
,
142
(
5
), p.
051005
.10.1115/1.4045657
32.
Phan
,
H. M.
, and
He
,
L.
,
2021
, “
Investigation of Mistuned Oscillating Cascade Using Fully-Coupled Method
,”
ASME
Paper No. GT2021-59124.10.1115/GT2021-59124
You do not currently have access to this content.