Abstract

The gas turbine engine design involves multidisciplinary, multifidelity iterative design-analysis processes. These highly intertwined processes are nowadays incorporated in automated design frameworks to facilitate high-fidelity, fully coupled, large-scale simulations. The most tedious and time-consuming step in such simulations is the construction of a common geometry database that ensures geometry consistency at every step of the design iteration, is accessible to multidisciplinary solvers, and allows system-level analysis. This paper presents a novel design-intent-driven geometry modeling environment that is based on a top-down feature-based geometry model generation method. The geometry features in this modeling environment are organized in a turbomachinery feature taxonomy. They produce a tree-like logical structure representing the engine geometry, wherein abstract features outline the engine architecture, while lower-level features define the detailed geometry. This top-down flexible feature-tree arrangement enables the design intent to be preserved throughout the design process, allows the design to be modified freely, and supports the design intent variations to be propagated throughout the geometry model automatically. The application of the proposed feature-based geometry modeling environment is demonstrated by generating a whole-engine computational geometry model. This geometry modeling environment provides an efficient means of rapidly populating complex turbomachinery assemblies. The generated engine geometry is fully scalable, easily modifiable, and is re-usable for generating the geometry models of new engines or their derivatives. This capability also enables fast multifidelity simulation and optimization of various gas turbine systems.

References

1.
Bidarra
,
R.
, and
Bronsvoort
,
W. F.
,
2000
, “
Semantic Feature Modelling
,”
Comput.-Aided Des.
,
32
(
3
), pp.
201
225
.10.1016/S0010-4485(99)00090-1
2.
NATO-RTO
,
2002
, “
Performance Prediction and Simulation of Gas Turbine Engine Operation
,” NATO-RTO, Neuilly-Sur-Seine, France, Technical Report No. AVT-018, RTO-TR-044, pp.
1
356
.
3.
Rodriguez
,
D. L.
, and
Sturdza
,
P.
,
2006
, “
A Rapid Geometry Engine for Preliminary Aircraft Design
,”
AIAA
Paper No. 2006-929.10.2514/6.2006-929
4.
Robertson
,
D.
, and
Allen
,
T. J.
,
1993
, “
CAD System Use and Engineering Performance
,”
IEEE Trans. Eng. Manage.
,
40
(
3
), pp.
274
282
.10.1109/17.233189
5.
Baer
,
A.
,
Eastman
,
C.
, and
Henrion
,
M.
,
1979
, “
Geometric Modelling: A Survey
,”
Comput.-Aided Des.
,
11
(
5
), pp.
253
272
.10.1016/0010-4485(79)90071-X
6.
Lienhardt
,
P.
,
1991
, “
Topological Models for Boundary Representation: A Comparison With N-Dimensional Generalized Maps
,”
Comput.-Aided Des.
,
23
(
1
), pp.
59
82
.10.1016/0010-4485(91)90082-8
7.
Hoffmann
,
C. M.
, and
Juan
,
R.
,
1992
, “
Erep—An Editable High-Level Representation for Geometric Design and Analysis
,” Department of Computer Science, Purdue University, West Lafayette, IN, Report No. CSD-TR-92-055, pp.
1
42
.
8.
Requicha
,
A.
,
1977
, “
Mathematical Models of Rigid Solid Objects
,” Production Automation Project, University of Rochester, Rochester, NY, Technical Report Memorandum 28.
9.
Hoffmann
,
C. M.
,
1989
,
Geometric and Solid Modeling
, Morgan Kaufmann, Burlington, MA.
10.
de Berg
,
M.
,
van Krefeld
,
M.
,
Overmars
,
M.
, and
Schwarzkopf
,
O.
,
2008
,
Computational Geometry: Algorithms and Applications
, 3rd ed., Vol.
1
,
Springer-Verlag
, Berlin.
11.
Samareh
,
J. A.
,
1999
, “
Status and Future of Geometry Modelling and Grid Generation for Design and Optimization
,”
J. Aircr.
,
36
(
1
), pp.
97
104
.10.2514/2.2417
12.
van Emmerik
,
M.
,
Rappoport
,
A.
, and
Rossignac
,
J.
,
1993
, “
Simplifying Interactive Design of Solid Models: A Hypertext Approach
,”
Visual Comput.
,
9
(
5
), pp.
239
254
.10.1007/BF01908447
13.
Raghothama
,
S.
, and
Shapiro
,
V.
,
2002
, “
Topological Framework for Part Families
,”
ASME J. Comput. Inf. Sci. Eng.
,
2
(
4
), pp.
246
255
.10.1115/1.1558073
14.
Gomes
,
A. J.
, and
Teixeira
,
J. C. G.
,
1991
, “
Form Feature Modelling in a Hybrid CSG/BRep Scheme
,”
Comput. Graphics
,
15
(
2
), pp.
217
229
.10.1016/0097-8493(91)90075-S
15.
Sheu
,
L. C.
, and
Lin
,
J. T.
,
1993
, “
Representation Scheme for Defining and Operating Form Features
,”
Comput.-Aided Des.
,
25
(
6
), pp.
333
347
.10.1016/0010-4485(93)90028-M
16.
Smithers
,
T.
,
1989
, “
AI-Based Design Versus Geometry Based Design or Why Design Cannot Be Supported by Geometry Alone
,”
Comput.-Aided Des.
,
21
(
3
), pp.
141
150
.10.1016/0010-4485(89)90068-7
17.
Shah
,
J. J.
, and
Mantyla
,
M.
,
1995
,
Parametric and Feature-Based CAD/CAM: Concepts, Techniques and Applications
,
Wiley
,
New-York
.
18.
Shah
,
J. J.
,
Mantyla
,
M.
, and
Nau
,
D. S.
,
2013
,
Advances in Feature-Based Manufacturing
,
Elsevier Science
, Amsterdam, The Netherlands.
19.
Samareh
,
J. A.
,
2000
, “
Geometry Modeling and Grid Generation for Design and Optimization
,”
Computational Aerosciences in the 21st Century
,
Springer
, Dordrecht,
The Netherlands
, pp.
211
229
.
20.
Bronsvoort
,
W. F.
,
Bidarra
,
R.
, and
Nyirenda
,
P. J.
,
2006
, “
Developments in Feature Modelling
,”
Comput.-Aided Des. Appl.
,
3
(
5
), pp.
655
664
.10.1080/16864360.2006.10738419
21.
Hoffmann
,
C. M.
, and
Joan-Arinyo
,
R.
,
1998
, “
On User-Defined Features
,”
Comput.-Aided Des.
,
30
(
5
), pp.
321
332
.10.1016/S0010-4485(97)00048-1
22.
Shah
,
J. J.
,
1991
, “
Assessment of Features Technology
,”
Comput.-Aided Des.
,
23
(
5
), pp.
331
343
.10.1016/0010-4485(91)90027-T
23.
di Mare
,
L.
,
Kulkarni
,
D. Y.
,
Wang
,
F.
,
Romanov
,
A.
,
Ramar
,
R.
, and
Zachariadis
,
Z. I.
,
2011
, “
Virtual Gas Turbines: Geometry and Conceptual Description
,”
ASME
Paper No. GT2011-46437.10.1115/GT2011-46437
24.
Dawes
,
W.
,
Dhanasekaran
,
P.
,
Demargne
,
A.
,
Kellar
,
W.
, and
Savill
,
A.
,
2001
, “
Reducing Bottlenecks in the CAD-to-Mesh-to-Solution Cycle Time to Allow CFD to Participate in Design
,”
ASME J. Turbomach.
,
123
(
3
), pp.
552
557
.10.1115/1.1370162
25.
Merchant
,
A.
, and
Haimes
,
R.
,
2003
, “
A CAD-Based Blade Geometry Model for Turbomachinery Aero Design Systems
,”
ASME
Paper No. GT2003-38305.10.1115/GT2003-38305
26.
Connacher
,
H. I.
,
Jayaram
,
S.
, and
Lyons
,
K.
,
1995
, “
Virtual Assembly Design Environments
,”
ASME
Paper No. CIE1995-0816.10.1115/CIE1995-0816
27.
Salomons
,
O.
,
van Houten
,
F.
, and
Kals
,
H.
,
1993
, “
Review of Research in Feature-Based Design
,”
J. Manuf. Syst.
,
12
(
2
), pp.
113
132
.10.1016/0278-6125(93)90012-I
28.
Sacks
,
R.
,
Eastman
,
C. M.
, and
Lee
,
G.
,
2004
, “
Parametric 3D Modeling in Building Construction With Examples From Pre-Cast Concrete
,”
Autom. Constr.
,
13
(
3
), pp.
291
312
.10.1016/S0926-5805(03)00043-8
29.
Chen
,
X.
,
Gao
,
S.
,
Yang
,
Y.
, and
Zhang
,
S.
,
2012
, “
Multi-Level Assembly Model for Top-Down Design of Mechanical Products
,”
Comput.-Aided Des.
,
44
(
10
), pp.
1033
1048
.10.1016/j.cad.2010.12.008
30.
Thakur
,
A.
,
Banerjee
,
A. G.
, and
Gupta
,
S. K.
,
2009
, “
A Survey of CAD Model Simplification Techniques for Physics-Based Simulation
,”
Comput.-Aided Des.
,
41
(
2
), pp.
65
80
.10.1016/j.cad.2008.11.009
31.
Zhang
,
Y.
, and
Luo
,
X.
,
2009
, “
Design Intent Information Exchange of Feature-Based CAD Models
,”
IEEE Computer Science and Information Engineering, WRI World Congress
, Vol.
3
, Los Angeles, CA, Mar. 31–Apr. 2, pp.
11
15
.10.1109/CSIE.2009.536
32.
Mantyla
,
M.
,
1990
, “
A Modelling System for Top-Down Design of Assembled Products
,”
IBM J. Res. Dev.
,
34
(
5
), pp.
636
659
.10.1147/rd.345.0636
33.
van Leeuwen
,
J. P.
,
Wagter
,
H.
, and
Oxman
,
R. M.
,
1995
, “
A Feature-Based Approach to Modelling Architectural Information
,”
Proceedings of the CIB W78 Workshop: Modeling of Building Through Their Life-Cycle
, Stanford, CA, Aug. 22–24, pp.
467
479
.https://www.researchgate.net/publication/237671488_A_Feature_Based_Approach_to_Modelling_Architectural_Information
34.
Kulkarni
,
D. Y.
,
2013
, “
Feature-Based Computational Geometry and Secondary Air System Modelling for Virtual Gas Turbines
,” Ph.D. thesis,
Imperial College London
, London, UK.
35.
Kulkarni
,
D. Y.
, and
di Mare
,
L.
,
2013
, “
Virtual Engine Geometry Representation
,” Ph.D. thesis,
Vibration UTC, Imperial College London, London, UK.
36.
Seed
,
G.
,
2001
,
An Introduction to Object-Oriented Programming in C++
, 2nd ed.,
Springer-Verlag London Limited
,
London, UK
.
37.
Bruce
,
E.
,
2004
,
Thinking in C++
, 2nd ed.,
Prentice Hall
, Hoboken,
NJ
.
38.
Guo
,
X.
,
Lin
,
J.
,
Xu
,
K.
, and
Jin
,
X.
,
2014
, “
Creature Grammar for Creative Modeling of 3D Monsters
,”
Graphical Models
,
76
(
5
), pp.
376
389
.10.1016/j.gmod.2014.03.019
39.
Karuse
,
F. L.
,
Ciesla
,
M.
,
Rieger
,
E.
,
Stephan
,
M.
, and
Ulbrich
,
A.
,
1995
, “
Features—Semantic Objects for the Integration of Tasks in the Product Development Process
,”
ASME Paper No.
CIE1995-0797.10.1115/CIE1995-0797
40.
Shah
,
J. J.
,
1991
, “
Conceptual Development of Form Features and Feature Modellers
,”
Res. Eng. Des.
,
2
(
2
), pp.
93
108
.10.1007/BF01579254
41.
van Holland
,
W.
, and
Bronsvoort
,
W. F.
,
1995
, “
Assembly Features and Visibility Maps
,”
ASME
Paper No. CIE1995-0799.10.1115/CIE1995-0799
42.
Finger
,
S.
, and
Dixon
,
J.
,
1989
, “
A Review of Research in Engineering Design—Part I: Descriptive, Prescriptive and Computer Based Models of Design Process
,”
Res. Eng. Des.
,
1
(
1
), pp.
51
67
.10.1007/BF01580003
43.
Shah
,
J. J.
, and
Tadepalli
,
R.
,
1992
, “
Feature Based Assembly Modeling
,”
Comput. Eng.
,
1
, pp.
253
260
.10.1115/CIE1992-003
44.
Shah
,
J. J.
, and
Rogers
,
M. T.
,
1993
, “
Assembly Modelling as an Extension of Feature-Based Design
,”
Res. Eng. Des.
,
5
(
3–4
), pp.
218
237
.10.1007/BF01608364
45.
Pratt
,
M. J.
, and
Wilson
,
P. R.
,
1985
, “
Requirements for Support of Form Features in a Solid Modelling System
,” CAM-I Inc., Arlington, TX, CAM-I Report No. R-85-ASP-01, pp.
1
170
.
46.
Ali
,
A.
,
1994
, “
Declarative Approach to Form Feature Definition
,” M.S. thesis,
Arizona State University
, Tempe, AZ, pp.
1
117
.
47.
Kulkarni
,
D. Y.
, and
di Mare
,
L.
,
2021
, “
Virtual Gas Turbines—Part II: An Automated Whole-Engine Secondary Air System Model Generation
,”
ASME
Paper No. GT2021-59720.10.1115/GT2021-59720
48.
Lu
,
G.
,
Moss
,
M.
,
May
,
G.
,
Wang
,
F.
, and
di Mare
,
L.
,
2018
, “
Geometric and Thermal Boundary Conditions Data Re-Use for Preliminary Aerothermal Design
,”
Aeronaut. J.
,
122
(
1249
), pp.
462
486
.10.1017/aer.2017.137
49.
Wang
,
F.
, and
di Mare
,
L.
,
2012
, “
Automated Hex Meshing for Turbomachinery Secondary Air System
,”
Proceedings of the 21st International Meshing Roundtable
, IMR 2012, San Jose, CA, Oct. 7–10,
Springer
, pp.
549
566
.
50.
Wang
,
F.
,
Carnevale
,
M.
,
Lu
,
G.
,
di Mare
,
L.
, and
Kulkarni
,
D. Y.
,
2016
, “
Virtual Gas Turbine: Pre-Processing and Numerical Simulations
,”
ASME
Paper No. GT2016-56227.10.1115/GT2016-56227
You do not currently have access to this content.