Abstract

To reduce the intensity of endwall secondary flow, the axisymmetric convergent contoured endwall is commonly designed in the first nozzle guide vane (NGV) passage of the real gas turbine engines. This endwall contouring can obviously alter flow field near endwall and affect the coolant flow through the upstream double-row discrete film holes. This leads to a significant influence on the endwall film cooling performance, vane surface phantom cooling, and vane passage aerodynamic performance. In this paper, a detailed numerical investigation on the endwall film cooling and vane pressure side surface phantom cooling was performed, at the simulated realistic gas turbine operating conditions (high inlet freestream turbulence level of 16%, exit Mach number of 0.85, and exit Reynolds number of 1.7 × 106). Based on a double coolant temperature model, a novel numerical method for the predictions of adiabatic wall film cooling effectiveness was proposed. This numerical method was validated by comparing the predicted results with experimental data of endwall Nusselt number, endwall film cooling effectiveness, and flow visualization near endwall. The results indicate that the present numerical method can accurately predict endwall thermal load distributions, endwall film cooling distributions, and vane surface phantom cooling distributions. The endwall heat transfer coefficient, endwall film cooling effectiveness, phantom cooling effectiveness of the vane pressure side surface, and total pressure loss coefficients (TPLC) were predicted and compared for two endwall contouring shapes (flat endwall and axisymmetric convergent contoured endwall) at three different blowing ratios (low blowing ratio of BR = 1.0, design blowing ratio of BR = 2.5, and high blowing ratio of BR = 3.5) with a constant density ratio of DR = 1.2, based on the present novel numerical method. Results show that the axisymmetric convergent endwall contouring leads to a slight enhancement (maximum enhancement level less than 20%) of endwall heat transfer in the entire vane passage (0 < x < 0.65Cx). The axisymmetric convergent endwall contouring has a significantly desired effect on endwall film cooling performance (maximum enhancement level of 67%), phantom cooling performance of the vane pressure side surface (maximum increase level approximately 100%), and aerodynamic loss (maximum reduction level of 1.45%) for all blowing ratio cases, but the benefit enhancement level is obviously affected by the blowing ratio values. This suggests that the optimum of endwall contouring shapes is an effective technical way to improve endwall film cooling performance and decrease the depletion of coolant; the coupled effects of the appropriate axisymmetric convergent endwall contouring and the optimum blowing ratio should be considered in the design process of advance endwall cooling schemes.

References

1.
Han
,
J. C.
,
2016
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.10.1115/1.4023826
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.10.2514/1.18034
3.
Herzig
,
H. Z.
,
Hansen
,
A. G.
, and
Costello
,
G. R.
,
1954
, “
A Visualization Study of Secondary Flows in Cascades
,” National Advisory Committee for Aeronautics, Cleveland, OH, NACA Annual Report No. 40, pp.
147
197
.
4.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
102
(
4
), pp.
866
874
.10.1115/1.3230352
5.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
99
(
1
), pp.
21
28
.10.1115/1.3446247
6.
Goldstein
,
R. J.
, and
Karni
,
J.
,
1984
, “
The Effect of a Wall Boundary Layer on Local Mass Transfer From a Cylinder in Crossflow
,”
ASME J. Heat Transfer-Trans. ASME
,
106
(
2
), pp.
260
267
.10.1115/1.3246667
7.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
.10.1115/1.3262089
8.
Simon
,
T.
, and
Piggush
,
J.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
J. Propul. Power
,
22
(
2
), pp.
301
312
.10.2514/1.16344
9.
Piggush
,
J. D.
, and
Simon
,
T. W.
,
2007
, “
Heat Transfer Measurements in a First-Stage Nozzle Cascade Having Endwall Contouring: Misalignment and Leakage Studies
,”
ASME J. Turbomach.
,
129
(
4
), pp.
782
790
.10.1115/1.2720506
10.
Kopper
,
F. C.
,
Milano
,
R.
, and
Vanco
,
M.
,
1981
, “
Experimental Investigation of Endwall Profiling in a Turbine Vane Cascade
,”
AIAA J.
,
19
(
8
), pp.
1033
1040
.10.2514/3.51032
11.
Shih
,
T. I.
,
Lin
,
Y.
, and
Simon
,
T. W.
,
2000
, “
Control of Secondary Flows in a Turbine Nozzle Guide Vane by Endwall Contouring
,”
ASME
Paper No. GT-2000-0556.10.1115/GT-2000-0556
12.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Flow Measurements in a Nozzle Guide Vane Passage With a Low Aspect Ratio and Endwall Contouring
,”
ASME J. Turbomach.
,
122
(
4
), pp.
659
666
.10.1115/1.1312799
13.
Piggush
,
J. D.
, and
Simon
,
T. W.
,
2005
, “
Flow Measurements in a First Stage Nozzle Cascade Having Endwall Contouring, Leakage and Assembly Features
,”
ASME
Paper No. GT-2005-68340.10.1115/GT-2005-68340
14.
Granser
,
D.
, and
Schulenberg
,
T.
,
1990
, “
Prediction and Measurement of Film Cooling Effectiveness for a First-Stage Turbine Vane Shroud
,”
ASME
Paper No. GT-1990-095.10.1115/GT-1990-095
15.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
,
2001
, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
123
(
4
), pp.
730
738
.10.1115/1.1400113
16.
Thomas
,
M.
, and
Povey
,
T.
,
2017
, “
Improving Turbine Endwall Cooling Uniformity by Controlling Near-Wall Secondary Flows
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
231
(
14
), pp.
2689
2705
.10.1177/0954410016673092
17.
Mahmood
,
G. I.
,
Gustafson
,
R.
, and
Acharya
,
S.
,
2009
, “
Flow Dynamics and Film Cooling Effectiveness on a Non-Axisymmetric Contour Endwall in a Two-Dimensional Cascade Passage
,”
ASME
Paper No. 2009-GT-60236.10.1115/2009-GT-60236
18.
Barigozzi
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
, and
Quattrore
,
M.
,
2010
, “
Endwall Film Cooling Effects on Secondary Flows in a Contoured Endwall Nozzle Vane
,”
ASME J. Turbomach.
,
132
(
4
), p.
041005
.10.1115/1.3192147
19.
Yang
,
C. S.
,
Lin
,
C. L.
, and
Gau
,
C.
,
2008
, “
Film Cooling Performance and Heat Transfer Over an Inclined Film-Cooled Surface
,”
J. Thermophys. Heat Transfer
,
22
(
3
), pp.
485
492
.10.2514/1.32351
20.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2010
, “
Effects of an Axisymmetric Contoured Endwall on a Nozzle Vane: Adiabatic Effectiveness Measurements
,”
ASME
Paper No. GT2010-22968.10.1115/GT2010-22968
21.
Okita
,
Y.
, and
Nakamata
,
C.
,
2008
, “
Computational Predictions of Endwall Film Cooling for a Turbine Nozzle Vane With an Asymmetric Contoured Passage
,”
ASME
Paper No. GT-2008-50878.10.1115/GT-2008-50878
22.
Mahmood
,
G. I.
,
Gustafson
,
R.
, and
Acharya
,
S.
,
2009
, “
Flow Dynamics and Film Cooling Effectiveness on a Non-Axisymmetric Contour Endwall in a Two-Dimensional Cascade Passage
,”
ASME
Paper No. GT2009-60236.10.1115/GT2009-60236
23.
Chen
,
P.
,
Li
,
X.
,
Ren
,
J.
,
Jiang
,
H.
, and
Simon
,
T.
,
2019
, “
Influence of Endwall 2D Contouring on Endwall Adiabatic Cooling Effectiveness and Aerodynamic Performance
,”
J. Int. Heat Mass Transfer
,
137
, pp.
690
702
.10.1016/j.ijheatmasstransfer.2019.02.089
24.
Zhang
,
K.
,
Li
,
J.
,
Li
,
Z.
, and
Song
,
L.
,
2019
, “
Effects of Simulated Swirl Purge Flow and Mid-Passage Gap Leakage on Turbine Blade Platform Cooling and Suction Surface Phantom Cooling Performance
,”
J. Int. Heat Mass Transfer
,
129
, pp.
618
634
.10.1016/j.ijheatmasstransfer.2018.09.111
25.
Zhang
,
L. Z.
,
Yin
,
J.
,
Liu
,
K. V.
, and
Hee-Koo
,
M.
,
2015
, “
Effect of Hole Diameter on Nozzle Endwall Film Cooling and Associated Phantom Cooling
,”
ASME
Paper No. GT2015-42541.10.1115/GT2015-42541
26.
Du
,
K.
,
Li
,
Z.
,
Li
,
J.
, and
Sunden
,
B.
,
2017
, “
Influence of the Upstream Slot Geometry on the Endwall Cooling and Phantom Cooling of Vane Suction Side Surface
,”
J. Appl. Therm. Eng.
,
121
, pp.
688
700
.10.1016/j.applthermaleng.2017.04.143
27.
Zhang
,
Y.
, and
Yuan
,
X.
,
2012
, “
Experimental Investigation of Turbine Phantom Cooling on Suction Side With Combustor-Turbine Leakage Gap Flow and Endwall Film Cooling
,”
ASME
Paper No. GT-2012-69295.10.1115/GT-2012-69295
28.
Arisi
,
A.
,
Phillips
,
J.
,
Ng
,
W. F.
,
Xue
,
S.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2016
, “
An Experimental and Numerical Study on the Aerothermal Characteristics of a Ribbed Transonic Squealer-Tip Turbine Blade With Purge Flow
,”
ASME J. Turbomach.
,
138
(
10
), p.
101007
.10.1115/1.4032925
29.
Nasir
,
S.
,
Bolchoz
,
T.
,
Ng
,
W. F.
,
Zhang
,
L. J.
,
Moon
,
H. K.
, and
Anthony
,
R. J.
,
2012
, “
Showerhead Film Cooling Performance of a Turbine Vane at High Freestream Turbulence in a Transonic Cascade
,”
ASME J. Turbomach.
,
134
(
5
), p.
051021
.10.1115/1.4004200
30.
Abraham
,
S.
,
Panchal
,
K.
,
Xue
,
S.
,
Ekkad
,
S. V.
,
Ng
,
W.
,
Brown
,
B. J.
, and
Malandra
,
A.
,
2010
, “
Experimental and Numerical Investigations of a Transonic, High Turning Turbine Cascade With a Divergent Endwall
,”
ASME
Paper No. FEDSM-ICNMM2010-30393.10.1115/FEDSM-ICNMM2010-30393
31.
Carullo
,
J. S.
,
Nasir
,
S.
,
Cress
,
R. D.
,
Ng
,
W. F.
,
Thole
,
K. A.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2011
, “
The Effects of Freestream Turbulence, Turbulence Length Scale, and Exit Reynolds Number on Turbine Blade Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
133
(
1
), p.
011030
.10.1115/1.4001366
32.
Smith
,
D. E.
,
Bubb
,
J. V.
,
Popp
,
O.
,
Grabowski
,
H. C.
III,
Diller
,
T. E.
,
Schetz
,
J. A.
, and
Ng
,
W. F.
,
2000
, “
An Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade, Part I: Unsteady Heat Transfer
,”
ASME
Paper No. GT-2000-0202.10.1115/GT-2000-0202
33.
Rutledge
,
J. L.
,
Robertson
,
D.
, and
Bogard
,
D. G.
,
2006
, “
Degradation of Film Cooling Performance on a Turbine Vane Suction Side Due to Surface Roughness
,”
ASME J. Turbomach.
,
128
(
3
), pp.
547
554
.10.1115/1.2185674
34.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
,
2005
, “
Effects of Mid-Passage Gap, Endwall Misalignment and Roughness on Endwall Film-Cooling
,”
ASME
Paper No. GT2005-68900.10.1115/GT2005-68900
35.
Arisi
,
A.
,
Mayo
,
D.
,
Li
,
Z.
,
Ng
,
W. F.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2016
, “
An Experimental and Numerical Investigation of the Effect of Combustor-Nozzle Platform Misalignment on Endwall Heat Transfer at Transonic High Turbulence Conditions
,”
ASME
Paper No. GT2016-57763.10.1115/GT2016-57763
You do not currently have access to this content.