Abstract

The waste heat recovery from the gas turbine (GT) exhaust is typical for increasing performance and reducing CO2 emissions in industrial facilities. Nowadays, numerous already operating gas turbine plants could be retrofitted and upgraded with a bottoming cycle powered by the exhaust gasses. In this case, the standard solution would be to use a water steam Rankine cycle. However, even if this technology usually yields the best efficiency, other alternatives are often preferred on the lower size scale. Organic Rankine cycles (ORCs) are the commercial alternatives to steam Rankine cycles, but many other alternative cycles exist or can be developed, with potential benefits from safety, technical or economic points of view. This study compares several alternative technologies suited to recover gas turbine waste heat, and a detailed cost analysis for each is presented. On this basis, a guideline is proposed for the technology choice considering a wide range of application sizes and temperature levels typical for waste heat recovery from gas turbines. The compared technologies are ORCs, Rankine cycles (RCs) with water and ammonia mixtures at constant composition, supercritical CO2 cycles (sCO2), sCO2 cycles with mixtures of CO2 and other gasses. As it resulted, ORCs can achieve the lowest levelized cost of energy (32 $/MWh–46 $/MWh) if flammable fluids can be employed. Otherwise, Rankine cycles with a constant composition mixture of water and ammonia are a promising alternative, reaching a levelized cost of energy (LCOE) of 36–58 $/MWh.

References

1.
Karellas
,
S.
,
Leontaritis
,
A. D.
,
Panousis
,
G.
,
Bellos
,
E.
, and
Kakaras
,
E.
,
2013
, “
Energetic and Exergetic Analysis of Waste Heat Recovery Systems in the Cement Industry
,”
Energy
,
58
, pp.
147
156
.10.1016/j.energy.2013.03.097
2.
Cui
,
X.
,
Qiu
,
Z.
,
Weng
,
J.
, and
Li
,
Z.
,
2016
, “
Heat Transfer Performance of Closed Loop Pulsating Heat Pipes With Methanol-Based Binary Mixtures
,”
Exp. Therm. Fluid Sci.
,
76
, pp.
253
263
.10.1016/j.expthermflusci.2016.04.005
3.
Carcasci
,
C.
,
Ferraro
,
R.
, and
Miliotti
,
E.
,
2014
, “
Thermodynamic Analysis of an Organic Rankine Cycle for Waste Heat Recovery From Gas Turbines
,”
Energy
,
65
, pp.
91
100
.10.1016/j.energy.2013.11.080
4.
Li
,
Y. R.
,
Du
,
M. T.
,
Wu
,
C. M.
,
Wu
,
S. Y.
, and
Liu
,
C.
,
2014
, “
Potential of Organic Rankine Cycle Using Zeotropic Mixtures as Working Fluids for Waste Heat Recovery
,”
Energy
,
77
, pp.
509
519
.10.1016/j.energy.2014.09.035
5.
Mahmoudi
,
A.
,
Fazli
,
M.
, and
Morad
,
M. R.
,
2018
, “
A Recent Review of Waste Heat Recovery by Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
143
, pp.
660
675
.10.1016/j.applthermaleng.2018.07.136
6.
Wagar
,
W. R.
,
Zamfirescu
,
C.
, and
Dincer
,
I.
,
2010
, “
Thermodynamic Performance Assessment of an Ammonia-Water Rankine Cycle for Power and Heat Production
,”
Energy Convers. Manage.
,
51
(
12
), pp.
2501
2509
.10.1016/j.enconman.2010.05.014
7.
Zare
,
V.
, and
Mahmoudi
,
S. M. S.
,
2015
, “
A Thermodynamic Comparison Between Organic Rankine and Kalina Cycles for Waste Heat Recovery From the Gas Turbine-Modular Helium Reactor
,”
Energy
,
79
, pp.
398
406
.10.1016/j.energy.2014.11.026
8.
Astolfi
,
M.
,
Alfani
,
D.
,
Lasala
,
S.
, and
Macchi
,
E.
,
2018
, “
Comparison Between ORC and CO2 Power Systems for the Exploitation of Low-Medium Temperature Heat Sources
,”
Energy
,
161
, pp.
1250
1261
.10.1016/j.energy.2018.07.099
9.
Alfani
,
D.
,
Binotti
,
M.
,
Macchi
,
E.
,
Silva
,
P.
, and
Astolfi
,
M.
,
2021
, “
sCO2 Power Plants for Waste Heat Recovery: Design Optimization and Part-Load Operation Strategies
,”
Appl. Therm. Eng.
,
195
, p.
117013
.10.1016/j.applthermaleng.2021.117013
10.
Marchionni
,
M.
,
Bianchi
,
G.
,
Tsamos
,
K. M.
, and
Tassou
,
S. A.
,
2017
, “
Techno-Economic Comparison of Different Cycle Architectures for High Temperature Waste Heat to Power Conversion Systems Using CO2 in Supercritical Phase
,”
Energy Procedia
,
123
, pp.
305
312
.10.1016/j.egypro.2017.07.253
11.
Cho
,
S. K.
,
2015
, “
Investigation of the Bottoming Cycle for High Efficiency Combined Cycle Gas Turbine System With Supercritical Carbon Dioxide Power Cycle
,”
ASME
Paper No. GT2015-43077.10.1115/GT2015-43077
12.
Frate
,
G. F.
,
Ferrari
,
L.
, and
Desideri
,
U.
,
2019
, “
Analysis of Suitability Ranges of High Temperature Heat Pump Working Fluids
,”
Appl. Therm. Eng.
,
150
, pp.
628
640
.10.1016/j.applthermaleng.2019.01.034
13.
Nguyen
,
T. Q.
,
Slawnwhite
,
J. D.
, and
Boulama
,
K. G.
,
2010
, “
Power Generation From Residual Industrial Heat
,”
Energy Convers. Manage.
,
51
(
11
), pp.
2220
2229
.10.1016/j.enconman.2010.03.016
14.
Guo
,
J. Q.
,
Li
,
M. J.
,
Xu
,
J. L.
,
Yan
,
J. J.
, and
Wang
,
K.
,
2019
, “
Thermodynamic Performance Analysis of Different Supercritical Brayton Cycles Using CO2-Based Binary Mixtures in the Molten Salt Solar Power Tower Systems
,”
Energy
,
173
, pp.
785
798
.10.1016/j.energy.2019.02.008
15.
Jeong
,
W. S.
,
Lee
,
J. I.
, and
Jeong
,
Y. H.
,
2011
, “
Potential Improvements of Supercritical Recompression CO2 Brayton Cycle by Mixing Other Gases for Power Conversion System of a SFR
,”
Nucl. Eng. Des.
,
241
(
6
), pp.
2128
2137
.10.1016/j.nucengdes.2011.03.043
16.
Valencia-Chapi
,
R.
,
Coco-Enríquez
,
L.
, and
Muñoz-Antón
,
J.
,
2019
, “
Supercritical CO2 Mixtures for Advanced Brayton Power Cycles in Line-Focusing Solar Power Plants
,”
Appl. Sci.
,
10
(
1
), p.
55
.10.3390/app10010055
17.
Giwa
,
A.
, and
Giwa
,
S. O.
,
2013
, “
Estimating Optimum Operating Parameters of Olefin Metathesis Reactive Distillation Process
,”
ARPN J. Eng. Appl. Sci.
,
8
(
8
), pp.
614
624
.https://www.researchgate.net/publication/256445973_Estimating_the_optimum_operating_parameters_of_olefin_metathesis_reactive_distillation_process
18.
Turton
,
R.
, and
Bailie
,
R. C.
, Whiting, W. B., and Shaeiwitz, J. A.,
2009
,
Analysis, Synthesis and Design of Chemical Processes
,
Pearson
, Upper Saddle River, NJ.
19.
Weiland
,
N. T.
, and
Lance
,
B. W.
,
2019
, “
sCO2 Power Cycle Component Cost Correlations From DOE Data Spanning Multiple Scales and Applications
,”
ASME
Paper No. GT2019-90493.10.1115/GT2019-90493
20.
Stijepovic
,
M. Z.
,
Linke
,
P.
,
Papadopoulos
,
A. I.
, and
Grujic
,
A. S.
,
2012
, “
On the Role of Working Fluid Properties in Organic Rankine Cycle Performance
,”
Appl. Therm. Eng.
,
36
(
1
), pp.
406
413
.10.1016/j.applthermaleng.2011.10.057
21.
Maizza
,
V.
, and
Maizza
,
A.
,
2001
, “
Unconventional Working Fluids in Organic Rankine-Cycles for Waste Energy Recovery Systems
,”
Appl. Therm. Eng.
,
21
(
3
), pp.
381
390
.10.1016/S1359-4311(00)00044-2
You do not currently have access to this content.