Abstract

The concept of variable rotor speed (VRS) has been recognized as an efficient means to improve rotorcraft operational performance and environmental impact, with electrification being a potential technology to further contribute to that. This paper explores the impact of optimal implementation and scheduling of VRS and power management strategy for conventional and hybrid-electric rotorcraft on energy, fuel, and emissions footprint. A multidisciplinary simulation framework for rotorcraft performance combined with models for engine performance and gaseous emissions estimation is deployed. A holistic optimization approach is developed for the derivation of globally optimal schedules for combined rotor speed and power split targeting minimum energy consumption. Application of the derived optimal schedules at mission level resulted to a 6% improvement in range capability for the VRS tilt-rotor relative to its conventional counterpart. For the hybrid-electric tilt-rotor, combined optimization of VRS and power management leads to an increase in range to 18.4% at 40% and 25% reduced payload for current (250 Wh/kg) and future (450 Wh/kg) battery technology, respectively. For representative urban air mobility (UAM) scenarios, it is demonstrated that the VRS concept resulted in up to 10% and 14% reductions in fuel burn and NOx relative to the nominal rotor speed case, respectively. The utilization of the combined optimum VRS and power split schedules can boost performance with reductions of the order of 20% and 25% in mission fuel/CO2 and NOx at a reduced payload relative to the conventional tilt-rotor.

References

1.
International Air Transport Association (IATA)
,
2019
, “
Aircraft Technology Roadmap to 2050
,” Report No.
ARC R&M 2642
.https://www.iata.org/contentassets/8d19e716636a47c184e7221c77563c93/Technology-roadmap-2050.pdf
2.
Bradley
,
M.
,
Droney
,
C.
,
Paisley
,
D.
,
Roth
,
B.
,
Gowda
,
S.
, and
Kirby
,
M.
,
2012
, “
NASA N+3 Subsonic Ultra Green Aircraft Research Sugar Final Review
,” Boeing Research Technology, Report No. NASA/TM—2011-217239.
3.
MarketsandMarkets,
2021
, “
Urban Air Mobility Market, MarketsandMarkets, Report Code: AS 695
,” MarketsandMarkets, Northbrook, IL, accessed Feb. 15, 2023, https://www.marketsandmarkets.com/Market-Reports/urban-air-mobility-market-251142860.html?gclid=Cj0KCQjw06OTBhC_ARIsAAU1yOV9O-MOGd2Xl1 ULeFUgHl2Q4QYZwnYe6pu9xTCk0AiAziOlZyU7oCIaAt45EALw_wcB
4.
Holden
,
J.
, and
Goel
,
N.
,
2016
, “
Fast-Forwarding to a Future of on-Demand Urban Air Transportation
,”
White Paper
,
Uber Technologies
,
San Francisco, CA
.
5.
Roumeliotis
,
I.
,
Mourouzidis
,
C.
,
Zafferetti
,
M.
,
Unlu
,
D.
,
Broca
,
O.
, and
Pachidis
,
V.
,
2020
, “
Assessment of Thermo-Electric Power Plants for Rotorcraft Application
,”
ASME J. Eng. Gas Turbines Power
,
142
(
5
), p.
051003
.10.1115/1.4045103
6.
Danis
,
R. A.
,
Green
,
M. W.
,
Freeman
,
J. L.
, and
Hall
,
D. W.
,
2018
, “
Examining the Conceptual Design Process for Future Hybrid-Electric Rotorcraft
,” Report No.
NASA/CR-2018-219897
.https://ntrs.nasa.gov/citations/20180003214
7.
Saias
,
C. A.
,
Goulos
,
I.
,
Roumeliotis
,
I.
,
Pachidis
,
V.
, and
Bacic
,
M.
,
2021
, “
Preliminary Design of Hybrid-Electric Propulsion Systems for Emerging Urban Air Mobility Rotorcraft Architectures
,”
ASME J. Eng. Gas Turbines Power
,
143
(
11
), p.
111015
.10.1115/1.4052057
8.
Doff-Sotta
,
M.
,
Cannon
,
M.
, and
Bacic
,
M.
,
2020
, “
Optimal Energy Management for Hybrid Electric Aircraft
,”
IFAC
,
53
(
2
), pp.
6043
6049
.10.1016/j.ifacol.2020.12.1672
9.
Donateo
,
T.
,
De Pascalis
,
C. L.
,
Strafella
,
L.
, and
Ficarella
,
A.
,
2021
, “
Off-Line and on-Line Optimization of the Energy Management Strategy in a Hybrid Electric Helicopter for Urban Air-Mobility
,”
Aerosp. Sci. Technol.
,
113
, p.
106677
.10.1016/j.ast.2021.106677
10.
Misté
,
G. A.
, and
Benini
,
E.
,
2016
, “
Variable-Speed Rotor Helicopters: Performance Comparison Between Continuously Variable and Fixed-Ratio Transmissions
,”
J. Aircr.
,
53
(
5
), pp.
1189
1200
.10.2514/1.C032744
11.
Karem
,
A. E.
,
2003
, “
Optimum Speed Tilt Rotor
,” U.S. Patent 6,641,365 B2.
12.
Misté
,
G. A.
,
Benini
,
E.
,
Andre
,
G.
, and
Maria
,
G.-A.
,
2015
, “
A Methodology for Determining the Optimal Rotational Speed of a Variable Rpm Main Rotor/Turboshaft Engine System
,”
J. Am. Helicopter Soc.
,
60
(
3
), pp.
1
11
.10.4050/JAHS.60.032009
13.
Steiner
,
J. H.
,
2008
, “An Investigation of Performance Benefits and Trim Requirements of a Variable Speed Helicopter Rotor,”
Master's thesis
,
Pennsylvania State University
, State College, PA.https://etda.libraries.psu.edu/catalog/8874
14.
Han
,
D.
,
Pastrikakis
,
V.
, and
Barakos
,
G. N.
,
2016
, “
Helicopter Performance Improvement by Variable Rotor Speed and Variable Blade Twist
,”
Aerosp. Sci. Technol.
,
54
, pp.
164
173
.10.1016/j.ast.2016.04.011
15.
Chi
,
C.
,
Yan
,
X.
,
Chen
,
R.
, and
Li
,
P.
,
2019
, “
Analysis of Low-Speed Height-Velocity Diagram of a Variable-Speed-Rotor Helicopter in One-Engine-Failure
,”
Aerosp. Sci. Technol.
,
91
, pp.
310
320
.10.1016/j.ast.2019.05.003
16.
Goulos
,
I.
, and
Bonesso
,
M.
,
2019
, “
Variable Rotor Speed and Active Blade Twist for Civil Rotorcraft: Optimum Scheduling, Mission Analysis, and Environmental Impact
,”
Aerosp. Sci. Technol.
,
88
, pp.
444
456
.10.1016/j.ast.2019.03.040
17.
Polyzos
,
N. D.
,
Vouros
,
S.
,
Goulos
,
I.
, and
Pachidis
,
V.
,
2020
, “
Multi-Disciplinary Optimization of Variable Rotor Speed and Active Blade Twist Rotorcraft: Trade-Off Between Noise and Emissions
,”
Aerosp. Sci. Technol.
,
107
, p.
106356
.10.1016/j.ast.2020.106356
18.
Scullion
,
C.
,
Vouros
,
S.
,
Goulos
,
I.
,
Nalianda
,
D.
, and
Pachidis
,
V.
,
2021
, “
Optimal Control of a Compound Rotorcraft for Engine Performance Enhancement
,”
ASME J. Eng. Gas Turbines Power
,
143
(
2
), p.
021005
.10.1115/1.4049163
19.
Saias
,
C. A.
,
Roumeliotis
,
I.
,
Goulos
,
I.
,
Pachidis
,
V.
, and
Bacic
,
M.
,
2022
, “
Design Exploration and Performance Assessment of Advanced Recuperated Hybrid-Electric Urban Air Mobility Rotorcraft
,”
ASME J. Eng. Gas Turbines Power
,
144
(
3
), p.
031023
.10.1115/1.4052955
20.
MacMillan
,
W. L.
,
1974
, “Development of a Modular Type Computer Program for the Calculation of Gas Turbine,”
Ph.D. thesis
,
Cranfield University
, Bedford, UK.http://dspace.lib.cranfield.ac.uk/handle/1826/7401
21.
Vratny
,
P.
,
Gologan
,
C.
,
Pornet
,
C.
,
Isikveren
,
A.
, and
Hornung
,
M.
,
2013
, “
Battery Pack Modeling Methods for Universally-Electric Aircraft
,”
4th CEAS, Air and Space Conference
, Linköping,
Sweden
, Sept. 16–19, pp.
525
535
.https://www.researchgate.net/publication/275019738_Battery_Pack_Modeling_Methods_for_Universally-Electric_Aircraft
22.
Celis
,
C.
,
2010
, “Evaluation and Optimisation of Environmentally Friendly Aircraft Propulsion Systems,”
Ph.D. thesis
,
Cranfield University
, Bedford, UK.http://dspace.lib.cranfield.ac.uk/handle/1826/4686
23.
Lolis
,
P.
,
2014
, “Development of a Novel Preliminary Aero Engine Weight Estimation Method,”
Ph.D. thesis
,
Cranfield University, Bedford, UK
.https://files.core.ac.uk/pdf/23/29409793.pdf
24.
Goulos
,
I.
,
Giannakakis
,
P.
,
Pachidis
,
V.
, and
Pilidis
,
P.
,
2013
, “
Mission Performance Simulation of Integrated Helicopter–Engine Systems Using an Aeroelastic Rotor Model
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091201
.10.1115/1.4024869
25.
Padfield
,
G. D.
,
2007
,
Helicopter Flight Dynamics - The Theory and Application of Flying Qualities and Simulation Modelling
,
Wiley
,
Chichester, UK
.
26.
Leishman
,
J. G.
,
2006
,
Principles of Helicopter Aerodynamics
, 2nd ed.,
Cambridge Aerospace Series
,
New York
.
27.
Bhagwat
,
M. J.
,
2015
, “
Optimum Loading and Induced Swirl Effects in Hover
,”
J. Am. Helicopter Soc.
,
60
(
1
), pp.
1
14
.10.4050/JAHS.60.012004
28.
Bramwell
,
A.
,
Done
,
G.
, and
Balmford
,
D.
,
2000
,
Bramwell's Helicopter Dynamics
, 2nd ed.,
Butterworth-Heinemann
,
Oxford, UK
.
29.
Mangler
,
K. W.
,
1948
, “
Calculation of the Induced Velocity Field of a Rotor, Royal Aircraft Establishment
,” RAE Report No. Aero 2247.
30.
Dreier
,
M. E.
,
2007
, “
Introduction to Helicopter and Tiltrotor Flight Simulation
,” American Institute of Aeronautics and Astronautics, Reston, VA.10.2514/4.862083
31.
Harendra
,
P. B.
,
Joglekar
,
M. J.
,
Gaffey
,
T. M.
, and
Marr
,
R. L.
,
1973
, “
V/STOL Tilt Rotor Study - Volume V: A Mathematical Model for Real Time Flight Simulation of the Bell Model 301 Tilt Rotor Research Aircraft
,” NASA Contract No.
NAS 2–6599
.https://ntrs.nasa.gov/citations/19730022217
32.
Ferguson
,
S. W.
,
1988
, “
A Mathematical Model for Real Time Flight Simulation of a Generic Tilt-Rotor Aircraft
,” NASA Contractor Report CR-166535.
33.
Maisel
,
M. D.
,
Giulianetti
,
D. J.
, and
Dugan
,
D. C.
,
1980
, “
The History of the XV-15 Tilt Rotor Research Aircraft: From Concept to Flight
,”
NASA/SP-2000-4517
,
NASA Ames Research Center
,
Washington, DC
.https://history.nasa.gov/monograph17.pdf
34.
Carlson
,
E. B.
, and
Zhao
,
Y. J.
,
2002
, “
Optimal Short Takeoff of Tiltrotor Aircraft in One Engine Failure
,”
J. Aircr.
,
39
(
2
), pp.
280
289
.10.2514/2.2925
35.
Carlson
,
E. B.
, and
Zhao
,
Y. J.
,
2003
, “
Prediction of Tiltrotor Height-Velocity Diagrams Using Optimal Control Theory
,”
J. Aircr.
,
40
(
5
), pp.
896
905
.10.2514/2.6865
36.
Goulos
,
I.
,
Hempert
,
F.
,
Sethi
,
V.
,
Pachidis
,
V.
,
d'Ippolito
,
R.
, and
d'Auria
,
M.
,
2013
, “
Rotorcraft Engine Cycle Optimization at Mission Level
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091202
.10.1115/1.4024870
37.
Celis
,
C.
,
Moss
,
B.
, and
Pilidis
,
P.
,
2009
, “
Emissions Modelling for the Optimization of Greener Aircraft Operations
,”
ASME
Paper No. GT2009-59211. 10.1115/GT2009-59211
38.
Goulos
,
I.
,
Ali
,
F.
,
Tzanidakis
,
K.
,
Pachidis
,
V.
, and
d'Ippolito
,
R.
,
2015
, “
A Multidisciplinary Approach for the Comprehensive Assessment of Integrated Rotorcraft–Powerplant Systems at Mission Level
,”
ASME J. Eng. Gas Turbines Power
,
137
(
1
), p.
012603
.10.1115/1.4028181
39.
Vratny
,
P.
,
Forsbach
,
P.
,
Seitz
,
A.
, and
Hornung
,
M.
,
2014
, “
Investigation of Universally Electric Propulsion Systems for Transport Aircraft
,”
Proceedings of 29th Congress of the International Council of the Aeronautical Sciences
,
ICAS
,
Petersburg, Russia
, Sept. 7–12, pp.
1
13
.https://www.icas.org/ICAS_ARCHIVE/ICAS2014/data/papers/2014_0744_paper.pdf
40.
Vouros
,
S.
,
Polyzos
,
N. D.
,
Goulos
,
I.
, and
Pachidis
,
V.
,
2021
, “
Impact of Optimized Variable Rotor Speed and Active Blade Twist Control on Helicopter Blade–Vortex Interaction Noise and Environmental Impact
,”
J. Fluids Struct.
,
104
, p.
103285
.10.1016/j.jfluidstructs.2021.103285
41.
Bayraktar
,
H.
, and
Turalioglu
,
F. S.
,
2005
, “
A Kriging-Based Approach for Locating a Sampling Site—in the Assessment of Air Quality
,”
J. Stochastic Environ. Res. Risk Assess.
,
19
(
4
), pp.
301
305
.10.1007/s00477-005-0234-8
42.
Kohavi
,
R.
,
1995
, “
A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
,”
Proceedings of the 14th International Joint Conference on Artificial Intelligence
, Vol.
2
,
Morgan Kaufmann Publishers Inc
.,
San Francisco, CA
, pp.
1137
114
.https://www.ijcai.org/Proceedings/95-2/Papers/016.pdf
43.
Richter
,
H.
,
Connolly
,
J. W.
, and
Simon
,
D. L.
,
2020
, “
Optimal Control and Energy Management for Hybrid Gas-Electric Propulsion
,”
ASME J. Eng. Gas Turbines Power
,
142
(
9
), p.
091009
.10.1115/1.4047890
44.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
45.
Ortiz-Carretero
,
J.
,
Castillo Pardo
,
A.
,
Goulos
,
I.
, and
Pachidis
,
V.
,
2018
, “
Impact of Adverse Environmental Conditions on Rotorcraft Operational Performance and Pollutant Emissions
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
021201
.10.1115/1.4037751
46.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance
,
Wiley, Ltd
., Hoboken, NJ.10.1002/9780470774533
47.
Epstein
,
A. H.
, and
O'Flarity
,
S. M.
,
2019
, “
Considerations for Reducing Aviation's CO2 With Aircraft Electric Propulsion
,”
J. Propul. Power
,
35
(
3
), pp.
572
582
.10.2514/1.B37015
You do not currently have access to this content.