Abstract

This paper focuses on the interaction between the last high-pressure turbine (HPT) stage purge flows and the intermediate turbine duct (ITD) in modern turbofan engines. Two state-of-the-art ITD concepts are analyzed in this work: the turbine center frame (TCF), which is supported by symmetric aerodynamic strut fairings and generally adopted in conventional dual-spool engines; the turbine vane frame (TVF), which features turning struts and splitters and is typical of geared turbofan engines. The measurement campaigns for both setups are carried out in the transonic test turbine facility (TTTF) at Graz University of Technology. The test vehicles consist of an HPT stage, the ITD (TCF or TVF), and the first low-pressure turbine (LPT) vane or blade row. The same HPT stage is used for both ducts, to enable consistent, engine-representative inlet conditions between the two solutions. All the HPT stator–rotor cavities are supplied with purge flows by a secondary air system, with independent mass flow and temperature control for each purge line. Five-hole probe data are acquired at the inlet and outlet sections of the ITDs, to characterize the aerodynamic flow field entering and leaving the duct. In addition to the pneumatic probe tests, seed gas concentration measurements are performed in the same planes, to track down the cavity air in the mainstream and investigate its postegress behavior. Finally, detailed post-test computational fluid dynamics (CFD) results are presented to get additional insight into the flow phenomena developing through the strut passage.

References

1.
Göttlich
,
E.
,
2011
, “
Research on the Aerodynamics of Intermediate Turbine Diffusers
,”
Prog. Aerosp. Sci.
,
47
(
4
), pp.
249
279
.10.1016/j.paerosci.2011.01.002
2.
Spataro
,
R.
,
Göttlich
,
E.
,
Lengani
,
D.
,
Faustmann
,
C.
, and
Heitmeir
,
F.
,
2014
, “
Development of a Turning Mid Turbine Frame With Embedded Design—Part I: Design and Steady Measurements
,”
ASME J. Turbomach.
,
136
(
7
), p.
071008
.10.1115/1.4025949
3.
Sovran
,
G.
, and
Klomp
,
E. D.
,
1967
, “
Experimentally Determined Optimum Geometries for Rectilinear Diffusers With Rectangular Conical or Annular Cross Section
,”
Fluid Mechanics of Internal Flow
,
Elsevier Publishing Co.
, Amsterdam, The Netherlands, pp.
270
319
.
4.
Wallin
,
F.
,
Osso
,
C. A.
, and
Johansson
,
T. G.
,
2008
, “
Experimental and Numerical Investigation of an Aggressive Intermediate Turbine Duct: Part 1 – Flowfield at Design Inlet Conditions
,”
AIAA
Paper No. 2008-7055.10.2514/6.2008-7055
5.
Osso
,
C. A.
,
Wallin
,
F.
, and
Johansson
,
T. G.
,
2008
, “
Experimental and Numerical Investigation of an Aggressive Intermediate Turbine Duct: Part 2 – Flowfield Under Off-Design Inlet Conditions
,”
AIAA
Paper No. 2008-7056.10.2514/6.2008-7056
6.
Sterzinger
,
P. Z.
,
Merli
,
F.
,
Peters
,
A.
,
Behre
,
S.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2021
, “
Impact of Turbine–Strut Clocking on the Performance of a Turbine Center Frame
,”
ASME J. Turbomach.
,
143
(
5
), p.
051011
.10.1115/1.4050145
7.
Lavagnoli
,
S.
,
Yasa
,
T.
,
Paniagua
,
G.
,
Castillon
,
L.
, and
Duni
,
S.
,
2012
, “
Aerodynamic Analysis of an Innovative Low Pressure Vane Placed in an S-Shape Duct
,”
ASME J. Turbomach.
,
134
(
1
), p.
011013
.10.1115/1.4003241
8.
Yasa
,
T.
,
Lavagnoli
,
S.
, and
Paniagua
,
G.
,
2011
, “
Impact of a Multi–Splitter Vane Configuration on the Losses in a 1.5 Turbine Stage
,”
Proc. Inst. Mech. Eng., Part A J. Power Energy
,
225
(
7
), pp.
964
974
.10.1177/0957650911409843
9.
Paniagua
,
G.
,
Dénos
,
R.
, and
Almeida
,
S.
,
2004
, “
Effect of the Hub Endwall Cavity Flow on the Flow-Field of a Transonic High-Pressure Turbine
,”
ASME J. Turbomach.
,
126
(
4
), pp.
578
586
.10.1115/1.1791644
10.
Ong
,
J.
,
Miller
,
R. J.
, and
Uchida
,
S.
,
2012
, “
The Effect of Coolant Injection on the Endwall Flow of a High Pressure Turbine
,”
ASME J. Turbomach.
,
134
(
5
), p.
051003
.10.1115/1.4003838
11.
Regina
,
K.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2015
, “
Experimental Investigation of Purge Flow Effects on a High Pressure Turbine Stage
,”
ASME J. Turbomach.
,
137
(
4
), p.
041006
.10.1115/1.4028432
12.
Sanz
,
W.
,
Zerobin
,
S.
,
Egger
,
M.
,
Bader
,
P.
,
Pieringer
,
P.
,
Göttlich
,
E.
, and
Heitmeir
,
F.
,
2018
, “
Steady CFD Simulation of a High Pressure Turbine Rotor With Hub and Shroud Purge Flow
,”
ASME
Paper No. GT2018-75642.10.1115/GT2018-75642
13.
Carvalho Figueiredo
,
A. J.
,
Schreiner
,
B. D. J.
,
Mesny
,
A. W.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Li
,
Y. S.
,
Cleaver
,
D. J.
, and
Sangan
,
C. M.
,
2021
, “
Volumetric Velocimetry Measurements of Purge–Mainstream Interaction in a One-Stage Turbine
,”
ASME J. Turbomach.
,
143
(
4
), p.
041011
.10.1115/1.4050072
14.
Zhang
,
Z.
,
Zhang
,
Y.
,
Dong
,
X.
,
Qu
,
X.
,
Lu
,
X.
, and
Zhang
,
Y.
,
2020
, “
Flow Mechanism Between Purge Flow and Mainstream in Different Turbine Rim Seal Configurations
,”
Chin. J. Aeronaut.
,
33
(
8
), pp.
2162
2175
.10.1016/j.cja.2020.02.016
15.
McLean
,
C.
,
Camci
,
C.
, and
Glezer
,
B.
,
2001
, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage: Part I — Aerodynamic Measurements in the Stationary Frame
,”
ASME J. Turbomach.
,
123
(
4
), pp.
687
696
.10.1115/1.1401026
16.
Jenny
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Brettschneider
,
M.
,
Gier
,
J.
, and
Engel
,
K.
,
2011
, “
Low-Pressure Turbine End Wall Design Optimisation and Experimental Verification in the Presence of Purge Flow
,”
ISABE
, Gothenburg, Sweden, Sept. 12–16, Paper No. 1717.https://www.researchgate.net/publication/323738381_Low-Pressure_Turbine_End_Wall_Design_Optimisation_and_Experimental_Verification_in_the_Presence_of_Purge_Flow
17.
Schrewe
,
S.
,
Werschnik
,
H.
, and
Schiffer
,
H. P.
,
2013
, “
Experimental Analysis of the Interaction Between Rim Seal and Main Annulus Flow in a Low Pressure Two Stage Axial Turbine
,”
ASME J. Turbomach.
,
135
(
5
), p.
051003
.10.1115/1.4023015
18.
Dahlqvist
,
J.
, and
Fridh
,
J.
,
2015
, “
Experimental Flow and Performance Investigations of Cavity Purge Flows in a High Pressure Turbine Stage
,”
11th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
, Madrid, Spain, Mar. 23–27, Paper No. ETC 2015 01.http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A878086&dswid=797
19.
Jenny
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Brettschneider
,
M.
,
Gier
,
J.
, and
Engel
,
K.
,
2013
, “
Unsteady Rotor Hub Passage Vortex Behavior in the Presence of Purge Flow in an Axial Low Pressure Turbine
,”
ASME J. Turbomach.
,
135
(
5
), p.
051022
.10.1115/1.4007837
20.
Scobie
,
J. A.
,
Hualca
,
F. P.
,
Patinios
,
M.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2018
, “
Re-Ingestion of Upstream Egress in a 1.5–Stage Gas Turbine Rig
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), p.
072507
.10.1115/1.4038361
21.
Zlatinov
,
M. B.
,
Tan
,
C. S.
,
Montgomery
,
M.
,
Islam
,
T.
, and
Harris
,
M.
,
2012
, “
Turbine Hub and Shroud Sealing Flow Loss Mechanisms
,”
ASME J. Turbomach.
,
134
(
6
), p.
061027
.10.1115/1.4006294
22.
Zerobin
,
S.
,
Peters
,
A.
,
Bauinger
,
S.
,
Ramesh
,
A. B.
,
Steiner
,
M.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2018
, “
Aerodynamic Performance of Turbine Center Frames With Purge Flows—Part I: The Influence of Turbine Purge Flow Rates
,”
ASME J. Turbomach.
,
140
(
6
), p.
061009
.10.1115/1.4039362
23.
Zerobin
,
S.
,
Aldrian
,
C.
,
Peters
,
A.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2018
, “
Aerodynamic Performance of Turbine Center Frames With Purge Flows—Part II: The Influence of Individual Hub and Tip Purge Flows
,”
ASME J. Turbomach.
,
140
(
6
), p.
061010
.10.1115/1.4039363
24.
Sterzinger
,
P. Z.
,
Zerobin
,
S.
,
Merli
,
F.
,
Wiesinger
,
L.
,
Peters
,
A.
,
Maini
,
G.
,
Dellacasagrande
,
M.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2020
, “
Impact of Varying High- and Low-Pressure Turbine Purge Flows on a Turbine Center Frame and Low-Pressure Turbine System
,”
ASME J. Turbomach.
,
142
(
10
), p.
101011
.10.1115/1.4046452
25.
Patinios
,
M.
,
Merli
,
F.
,
Hafizovic
,
A.
, and
Göttlich
,
E.
,
2021
, “
The Interaction of Purge Flows With Secondary Flow Features in Turbine Center Frames
,”
ASME
Paper No. GT2021-58586
.10.1115/GT2021-58586
26.
Hubinka
,
J.
,
Santner
,
C.
,
Paradiso
,
B.
,
Malzacher
,
F.
,
Göttlich
,
E.
, and
Heitmeir
,
F.
,
2009
, “
Design and Construction of a Two Shaft Test Turbine for Investigation of Mid Turbine Frame Flows
,”
Proceedings of ISABE
, Montreal, QC, Canada, Sept. 7–11, pp.
7
11
.https://www.researchgate.net/publication/228400908_Design_and_Construction_of_a_Two_Shaft_Test_Turbine_for_Investigation_of_Mid_Turbine_Frame_Flows
27.
Hubinka
,
J.
,
Paradiso
,
B.
,
Santner
,
C.
,
Pirker
,
H.-P.
, and
Göttlich
,
E.
,
2011
, “
Design and Operation of a Two Spool High Pressure Test Turbine Facility
,”
European Turbomachinery Conference
, Istanbul, Turkey, Mar. 21–25, pp.
1
9
.https://www.researchgate.net/publication/290562492_Design_and_operation_of_a_two_spool_high_pressure_test_turbine_facility
28.
Steiner
,
M.
,
Zerobin
,
S.
,
Bauinger
,
S.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
Development and Commissioning of a Purge Flow System in a Two Spool Test Facility
,” ETC, Stockholm, Sweden, Apr. 3–7, Paper No.
ETC2017-115
.https://www.euroturbo.eu/paper/ET C2017-115.pdf
29.
Faustmann
,
C.
, and
Göttlich
,
E.
,
2014
, “
Aerodynamics and Acoustics of Turning Mid Turbine Frames in a Two-Shaft Test Turbine
,”
ASME
Paper No. GT2014-25568.10.1115/GT2014-25568
30.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
,
1988
, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
1
8
.10.1115/1.3262163
31.
Chaluvadi
,
V. S. P.
,
Kalfas
,
A. I.
,
Banieghbal
,
M. R.
,
Hodson
,
H. P.
, and
Denton
,
J. D.
,
2001
, “
Blade-Row Interaction in a High-Pressure Turbine
,”
J. Propul. Power
,
17
(
4
), pp.
892
901
.10.2514/2.5821
32.
Bagshaw
,
D. A.
,
Ingram
,
G. L.
,
Gregory-Smith
,
D. G.
, and
Stokes
,
M. R.
,
2008
, “
An Experimental Study of Three-Dimensional Turbine Blades Combined With Profiled Endwalls
,”
Proc. Inst. Mech. Eng., Part A J. Power Energy
,
222
(
1
), pp.
103
110
.10.1243/09576509JPE478
33.
Persico
,
G.
,
Gaetani
,
P.
,
Dossena
,
V.
,
D'Ippolito
,
G.
, and
Osnaghi
,
C.
,
2009
, “
On the Definition of the Secondary Flow in Three-Dimensional Cascades
,”
Proc. Inst. Mech. Eng., Part A J. Power Energy
,
223
(
6
), pp.
667
676
.10.1243/09576509JPE836
34.
MATLAB
,
2019
,
Version 9.7.0 (R2019b)
,
The MathWorks
,
Natick, MA
.
35.
Simbula
,
G.
,
2020
, “
Numerical Simulation of a Counter-Rotating Two-Stage Turbine
,” Master's thesis,
Politecnico di Milano, Milan, Italy
.
36.
Ansys-CFX
,
2020
,
Release 20.1, Help System, ANSYS CFX-Solver Theory Guide
,
ANSYS
,
Canonsburg, PA
.
37.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
38.
Zerobin
,
S.
,
Bauinger
,
S.
,
Marn
,
A.
,
Peters
,
A.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
The Unsteady Flow Field of a Purged High Pressure Turbine Based on Mode Detection
,”
ASME
Paper No. GT2017-63619.10.1115/GT2017-63619
39.
Sterzinger
,
P. Z.
,
Zerobin
,
S.
,
Merli
,
F.
,
Wiesinger
,
L.
,
Dellacasagrande
,
M.
,
Peters
,
A.
,
Maini
,
G.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2019
, “
Unsteady Flow Interactions Between a High- and Low-Pressure Turbine: Part 1 — Time-Resolved Flow
,”
ASME
Paper No. GT2019-90790.10.1115/GT2019-90790
You do not currently have access to this content.