Abstract

Trimethyl orthoformate (TMOF: HC(OCH3)3) has recently been examined as a viable biofuel. TMOF is a branched isomer of oxymethylene ether-2 (OME2) that, due to its high oxygen content and lack of direct carbon-carbon bonds, considerably reduces the formation of soot particles. To meet the challenges of a more flexible and sustainable power generation, a detailed understanding of its combustion properties is essential for its safe and efficient utilization, neat or in blends. In this work, two fundamental combustion properties of TMOF were studied: (i) Auto-ignition of TMOF/synthetic air mixtures (φ = 1.0; diluted 1:5 with N2) using the shock tube method at pressures of 1, 4, and 16 bar, and (ii) Laminar burning velocities of TMOF/air mixtures using the cone angle method at ambient and elevated pressures of 3 and 6 bar. Furthermore, the impact of TMOF addition to a gasoline surrogate (PRF90) on ignition delay times was studied using the shock tube method at φ = 1.0, 1:5 dilution with N2, T =900–2000 K, and at 4 bar. The experimental data sets have been compared with predictions of the in-house chemical kinetic reaction mechanism (DLR concise mechanism) developed for interpreting the high-temperature combustion of a broad spectrum of different hydrocarbon fuels as well as oxygenated fuels, including TMOF. The results demonstrate that the ignition delay times of TMOF and OME2 are nearly identical for all pressures studied in the moderate-to high-temperature region. The results obtained for the blend indicate that ignition delay times of the TMOF/PRF90 blend are shorter than those of the primary reference fuel 90 (PRF90) at 4 bar. In the lean-to stoichiometric region, the results obtained for laminar burning velocities of TMOF and OME2 are similar. However, in the fuel-rich domain (φ > 1.0), laminar burning velocities for TMOF are noticeably lower, indicating a decreased reactivity. The model predictions based on the in-house model reveal a good agreement compared to the measured data within the experimental uncertainty ranges. In addition, sensitivity analyses regarding ignition delay times and laminar flame speeds were performed to better understand TMOF oxidation.

References

1.
Emberger
,
G.
,
2017
, “
Low Carbon Transport Strategy in Europe: A Critical Review
,”
Int. J. Sustain. Transp.
11
(
1
), pp.
31
35
.10.1080/15568318.2015.1106246
2.
European Commission
,
2012
, “
Commission Regulation (EU) No 459/2012 of 29 May 2012 Amending Regulation (EC) No 715/2007 of the European Parliament and of the Council and Commission Regulation (EC) No 692/2008 as Regards Emissions From Light Passenger and Commercial Vehicles (Euro 6) Text with EEA relevance (1)
,” European Commission (europa.eu).
3.
Hank
,
C.
,
Lazar
,
L.
,
Mantei
,
F.
,
Ouda
,
M.
,
White
,
R. J.
,
Smolinka
,
T.
,
Schaadt
,
A.
,
Hebling
,
C.
, and
Henning
,
H.-M.
, Fuels
2019
, “
Comparative Well-to-Wheel Life Cycle Assessment of OME3-5 Synfuel Production Via the Power-to-Liquid Pathway
,”
Sustainable Energy Fuels
,
3
(
11
), pp.
3219
3233
.10.1039/C9SE00658C
4.
Kohse-Höinghaus
,
K.
,
2021
, “
Combustion in the Future: The Importance of Chemistry
,”
Proc. Combust. Inst.
38
(
1
), pp.
1
56
.10.1016/j.proci.2020.06.375
5.
Liu
,
H.
,
Wang
,
Z.
,
Li
,
Y.
,
Zheng
,
Y.
,
He
,
T.
, and
Wang
,
J.
,
2019
, “
Recent Progress in the Application in Compression Ignition Engines and the Synthesis Technologies of Polyoxymethylene Dimethyl Ethers
,”
Appl. Energy
,
233–234
, pp.
599
611
.10.1016/j.apenergy.2018.10.064
6.
Liu
,
H.
,
Wang
,
Z.
,
Wang
,
J.
,
He
,
X.
,
Zheng
,
Y.
,
Tang
,
Q.
, and
Wang
,
J.
,
2015
, “
Performance, Combustion and Emission Characteristics of a Diesel Engine Fueled With Polyoxymethylene Dimethyl Ethers (PODE3-4)/Diesel Blends
,”
Energy
,
88
, pp.
793
800
.10.1016/j.energy.2015.05.088
7.
Omari
,
A.
,
Heuser
,
B.
,
Pischinger
,
S.
, and
Rüdinger
,
C.
,
2019
, “
Potential of Long-Chain Oxymethylene Ether and Oxymethylene Ether-Diesel Blends for Ultra-Low Emission Engines
,”
Appl. Energy
,
239
, pp.
1242
1249
.10.1016/j.apenergy.2019.02.035
8.
Duan
,
X.
,
Jia
,
M.
,
Bai
,
J.
, and
Li
,
Y.
,
2021
, “
Potential of Reactivity-Controlled Compression Ignition With Reverse Reactivity Stratification (R-RCCI) Fueled With Gasoline and Polyoxymethylene Dimethyl Ethers (PODEn
),”
Int. J. Engine Res.
, 23(8), pp. 1308–1326.10.1177/14680874211013667
9.
Deutz
,
S.
,
Bongartz
,
D.
,
Heuser
,
B.
,
Kätelhön
,
A.
,
Schulze Langenhorst
,
L.
,
Omari
,
A.
, et al.,
2018
, “
Cleaner Production of Cleaner Fuels: Wind-to-Wheel–Environmental Assessment of CO2-Based Oxymethylene Ether as a Drop-in Fuel
,”
Energy Environ. Sci.
,
11
(
2
), pp.
331
343
.10.1039/C7EE01657C
10.
Burger
,
J.
,
Siegert
,
M.
,
Ströfer
,
E.
, and
Hasse
,
H.
,
2010
, “
Poly (Oxymethylene) Dimethyl Ethers as Components of Tailored Diesel Fuel: Properties, Synthesis and Purification Concepts
,”
Fuel
,
89
(
11
), pp.
3315
3319
.10.1016/j.fuel.2010.05.014
11.
Schmitz
,
N.
,
Burger
,
J.
,
Ströfer
,
E.
, and
Hasse
,
H.
,
2016
, “
From Methanol to the Oxygenated Diesel Fuel Poly (Oxymethylene) Dimethyl Ether: An Assessment of the Production Cost
,”
Fuel
,
185
, pp.
67
72
.10.1016/j.fuel.2016.07.085
12.
Pélerin
,
D.
,
Gaukel
,
K.
,
Härtl
,
M.
,
Jacob
,
E.
, and
Wachtmeister
,
G.
,
2020
, “
Potentials to Simplify the Engine System Using the Alternative Diesel Fuels Oxymethylene Ether OME1 and OME3-6 on a Heavy-Duty Engine
,”
Fuel
,
259
, p.
116231
.10.1016/j.fuel.2019.116231
13.
Yeh
,
L.
,
Rickeard
,
D.
,
Duff
,
J.
,
Bateman
,
J.
,
Schlosberg
,
R.
, and
Caers
,
R.
,
2001
, “
Oxygenates: An Evaluation of Their Effects on Diesel Emissions
,”
SAE Trans.
, 110(4), pp.
1482
1498.
10.4271/2001-01-2019
14.
Gaiser
,
N.
,
Bierkandt
,
T.
,
Zinsmeister
,
J.
,
Hemberger
,
P.
,
Shaqiri
,
S.
,
Kasper
,
T.
,
Köhler
,
M.
, and
Aigner
,
M.
,
2021
, “
Disentangling of Linear and Branched Ethers: Flow Reactor Study of OME2 and Trimethoxy Methane Using Molecular Beam Mass Spectrometry and Synchrotron Photoionization
,”
Proceedings of 10th European Combustion Meeting
, Virtual edition, Apr. 14–15, pp.
120
125
.
15.
Chetty
,
R.
, and
Scott
,
K.
,
2007
, “
Dimethoxymethane and Trimethoxymethane as Alternative Fuels for Fuel Cells
,”
J. Power Sources
,
173
(
1
), pp.
166
171
.10.1016/j.jpowsour.2007.07.068
16.
Prakash
,
G. K. S.
,
Smart
,
M. C.
,
Olah
,
G. A.
,
Narayanan
,
S. R.
,
Chun
,
W.
,
Surampudi
,
S.
, and
Halpert
,
G.
,
2007
, “
Performance of Dimethoxymethane and Trimethoxymethane in Liquid-Feed Direct Oxidation Fuel Cells
,”
J. Power Sources
,
173
(
1
), pp.
102
109
.10.1016/j.jpowsour.2007.05.003
17.
Wang
,
J. T.
,
Lin
,
W. F.
,
Weber
,
M.
,
Wasmus
,
S.
, and
Savinell
,
R. F.
,
1998
, “
Trimethoxymethane as an Alternative Fuel for a Direct Oxidation PBI Polymer Electrolyte Fuel Cell
,”
Electrochim. Acta
,
43
(
24
), pp.
3821
3828
.10.1016/S0013-4686(98)00142-X
18.
Narayanan
,
S. R.
,
Vamos
,
E.
,
Surampudi
,
S.
,
Frank
,
H.
,
Halpert
,
G.
,
Surya Prakash
,
G. K.
,
Smart
,
M. C.
,
Knieler
,
R.
,
Olah
,
G. A.
,
Kosek
,
J.
, and
Cropley
,
C.
,
1997
, “
Direct Electro‐Oxidation of Dimethoxymethane, Trimethoxymethane, and Trioxane and Their Application in Fuel Cells
,”
J. Electrochem. Soc.
,
144
(
12
), pp.
4195
4201
.10.1149/1.1838165
19.
Döntgen
,
M.
, and
Heufer
,
K. A.
,
2021
, “
Shock Tube Study and Chemical Kinetic Modeling of Trimethoxymethane Combustion
,”
10th Proceedings of European Combustion Meeting
, Virtual edition, Apr. 14–15, pp.
220
224
.https://www.hgd.rwthaachen.de/cms/HGD/Forschung/Publikationen/~jhjrb/Details/?file=838451&lidx=1
20.
Jacobs
,
S.
,
Döntgen
,
M.
,
Alquaity
,
A. B.
,
Kopp
,
W. A.
,
Kröger
,
L. C.
,
Burke
,
U.
,
Pitsch
,
H.
,
Leonhard
,
K.
,
Curran
,
H. J.
, and
Heufer
,
K. A.
,
2019
, “
Detailed Kinetic Modeling of Dimethoxymethane. Part II: Experimental and Theoretical Study of the Kinetics and Reaction Mechanism
,”
Combust. Flame.
205
, pp.
522
533
.10.1016/j.combustflame.2018.12.026
21.
Döntgen
,
M.
,
Fuller
,
M. E.
,
Peukert
,
S.
,
Nativel
,
D.
,
Schulz
,
C.
,
Heufer
,
K. A.
, and
Goldsmith
,
C. F.
,
2022
, “
Shock Tube Study of the Pyrolysis Kinetics of Di-and Trimethoxy Methane
,”
Combust. Flame
,
242
, p.
112186
.10.1016/j.combustflame.2022.112186
22.
Platz
,
J.
,
Sehested
,
J.
,
Nielsen
,
O.
, and
Wallington
,
T.
,
1999
, “
Atmospheric Chemistry of Trimethoxymethane, (CH3O)3CH; Laboratory Studies
,”
J. Phys. Chem. A
,.
103
(
15
), pp.
2632
2640
.10.1021/jp9827476
23.
Potter
,
D. G.
,
Wiseman
,
S.
,
Blitz
,
M. A.
, and
Seakins
,
P. W.
,
2018
, “
Laser Photolysis Kinetic Study of OH Radical Reactions With Methyl tert-Butyl Ether and Trimethyl Orthoformate Under Conditions Relevant to Low Temperature Combustion: Measurements of Rate Coefficients and OH Recycling
,”
J. Phys. Chem. A
,
122
(
50
), pp.
9701
9711
.10.1021/acs.jpca.8b09122
24.
Du
,
B.
, and
Zhang
,
W.
,
2019
, “
Theoretical Study of the Reaction Mechanism and Kinetics of the OH+ Trimethyl Orthoformate ((CH3O)3CH)+ O2 Reaction
,”
Comput. Theor. Chem.
,
1159
, pp.
38
45
.10.1016/j.comptc.2019.05.009
25.
Ngũgĩ
,
J. M.
,
Richter
,
S.
,
Braun-Unkhoff
,
M.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2022
, “
A Study on Fundamental Combustion Properties of Oxymethylene Ether-1, the Primary Reference Fuel 90, and Their Blend: Experiments and Modeling
,”
Combust. Flame
, 243, p.
111996
.10.1016/j.combustflame.2022.111996
26.
Mendez
,
C. J.
,
Parthasarathy
,
R. N.
, and
Gollahalli
,
S. R.
,
2014
, “
Performance and Emission Characteristics of Butanol/Jet A Blends in a Gas Turbine Engine
,”
Appl. Energy
,
118
, pp.
135
140
.10.1016/j.apenergy.2013.12.011
27.
Chudnovsky
,
B.
,
Reshef
,
M.
, and
Talanker
,
A.
,
2017
, “
Evaluation of Methanol and Light Fuel Oil Blends Firing at a 50 MW Gas Turbine
,”
ASME
Paper No. GT-2019-57601.10.1115/GT-2019-57601
28.
Glaude
,
P. A.
,
Fournet
,
R.
,
Bounaceur
,
R.
, and
Moliere
,
M.
,
2011
, “
DME as a Potential Alternative Fuel for Gas Turbines: A Numerical Approach to Combustion and Oxidation Kinetics
,”
ASME
Paper No. GT-54617.10.1115/GT-54617
29.
Habib
,
Z.
,
Parthasarathy
,
R.
, and
Gollahalli
,
S.
,
2010
, “
Performance and Emission Characteristics of Biofuel in a Small-Scale Gas Turbine Engine
,”
Appl. Energy
,
87
(
5
), pp.
1701
1709
.10.1016/j.apenergy.2009.10.024
30.
Klassen
,
M.
,
Ramotowski
,
M.
,
Eskin
,
L.
, and
Roby
,
R.
,
2010
,
Clean Combustion of Liquid Biofuels in Gas Turbines for Renewable Power Generation
,
AICE, LPP Combustion LLC
,
San Antonio, TX
, pp.
1
6
.
31.
Harnisch
,
F.
,
Blei
,
I.
,
dos Santos
,
T. R.
,
Möller
,
M.
,
Nilges
,
P.
,
Eilts
,
P.
, and
Schröder
,
U.
,
2013
, “
From the Test-Tube to the Test-Engine: Assessing the Suitability of Prospective Liquid Biofuel Compounds
,”
RSC Adv.
,
3
(
25
), pp.
9594
9605
.10.1039/c3ra40354h
32.
Staffell
,
I.
,
2011
, The Energy and Fuel Data Sheet,
University of Birmingham
, Birmingham, UK, accessed Feb. 23, 2022, https://www.claverton-energy.com/wordpress/wp-content/uploads/2012/08/the_energy_and_fuel_data_sheet1.pdf
33.
Ngugi
,
J. M.
,
Richter
,
S.
,
Braun-Unkhoff
,
M.
,
Naumann
,
C.
,
Köhler
,
M.
, and
Riedel
,
U.
,
2022
, “
A Study on Fundamental Combustion Properties of Oxymethylene Ether-2
,”
ASME J. Eng. Gas Turb. Power
,
144
(
1
), p.
011014
.10.1115/1.4052097
34.
Braun-Unkhoff
,
M.
,
Dembowski
,
J.
,
Herzler
,
J.
,
Karle
,
J.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2015
, “
Alternative Fuels Based on Biomass: An Experimental and Modeling Study of Ethanol Cofiring to Natural Gas
,”
ASME J. Eng. Gas Turb. Power
,
137
(
9
), p.
091503
.10.1115/1.4029625
35.
Herzler
,
J.
, and
Naumann
,
C.
,
2008
, “
Shock Tube Study of the Ignition of Lean CO/H2 Fuel Blends at Intermediate Temperatures and High Pressure
,”
Combust. Sci. Technol.
,
180
(
10–11
), pp.
2015
2028
.10.1080/00102200802269715
36.
Methling
,
T.
,
Richter
,
S.
,
Kathrotia
,
T.
,
Braun-Unkhoff
,
M.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2018
, “
An Investigation of Combustion Properties of Butanol and Its Potential for Power Generation
,”
ASME J. Eng. Gas Turb. Power
,
140
(
9
), p.
091505
10.1115/1.4039731.
37.
Richter
,
S.
,
Kathrotia
,
T.
,
Naumann
,
C.
,
Kick
,
T.
,
Slavinskaya
,
N.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2018
, “
Experimental and Modeling Study of Farnesane
,”
Fuel
215
, pp.
22
29
.10.1016/j.fuel.2017.10.117
38.
Herzler
,
J.
,
Herbst
,
J.
,
Kick
,
T.
,
Naumann
,
C.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2013
, “
Alternative Fuels Based on Biomass: An Investigation of Combustion Properties of Product Gases
,”
ASME J. Eng. Gas Turb. Power
,
135
(
3
), p.
031401
.10.1115/1.4007817
39.
Naumann
,
C.
,
Janzer
,
C.
, and
Riedel
,
U.
,
2019
, “
Ethane/Nitrous Oxide Mixtures as a Green Propellant to Substitute Hydrazine: Validation of Reaction Mechanism
,” Proceedings of 9th European Combustion Meeting, Lisbon, Portugal, Apr. 14–17, Paper No.
ECM2019.S5_AII_21
.https://core.ac.uk/download/pdf/211566337.pdf
40.
Ngugi
,
J. M.
,
Richter
,
S.
,
Braun-Unkhoff
,
M.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2020
, “
An Investigation of Fundamental Combustion Properties of the Oxygenated Fuels DME and OME1
,”
ASME
Paper No. GT2020-14702.10.1115/GT2020-14702
41.
Petersen
,
E. L.
,
1999
, “
A shock tube and diagnostics for chemistry measurements at elevated pressures with application to methane ignition
,” Ph.D. thesis,
Stanford University, Stanford, CA
.
42.
Petersen
,
E. L.
,
2009
, “
Interpreting Endwall and Sidewall Measurements in Shock-Tube Ignition Studies
,”
Combust. Sci. Technol.
,
181
(
9
), pp.
1123
1144
.10.1080/00102200902973323
43.
Hong
,
Z.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2009
, “
Contact Surface Tailoring Condition for Shock Tubes With Different Driver and Driven Section Diameters
,”
Shock Waves
,
19
(
4
), pp.
331
336
.10.1007/s00193-009-0212-z
44.
Hong
,
Z.
,
Pang
,
G. A.
,
Vasu
,
S. S.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2009
, “
The Use of Driver Inserts to Reduce Non-Ideal Pressure Variations Behind Reflected Shock Waves
,”
Shock Waves
,
19
(
2
), pp.
113
123
.10.1007/s00193-009-0205-y
45.
Richter
,
S.
,
Braun-Unkhoff
,
M.
,
Herzler
,
J.
,
Methling
,
T.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2019
, “
An Investigation of Combustion Properties of a Gasoline Primary Reference Fuel Surrogate Blended With Butanol
,”
ASME
Paper No. GT2019-90911.10.1115/GT2019-90911
46.
Kathrotia
,
T.
,
Oßwald
,
P.
,
Naumann
,
C.
,
Richter
,
S.
, and
Köhler
,
M.
,
2021
, “
Combustion Kinetics of Alternative Jet Fuels, Part-II: Reaction Model for Fuel Surrogate
,”
Fuel
,
302
(
15
), p.
120736
.10.1016/j.fuel.2021.120736
47.
Lutz
,
A. E.
,
Kee
,
R. J.
, and
Miller
,
J. A.
,
1988
,
SENKIN: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics With Sensitivity Analysis
,
Sandia National Labs
,
Livermore, CA
.
48.
Goodwin
,
D. G.
,
Speth
,
R. L.
,
Moffat
,
H. K.
, and
Weber
,
B. W.
,
2022
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Zenodo, Genève, Switzerland.10.5281/zenodo.6387882
49.
Hu
,
E.
,
Gao
,
Z.
,
Liu
,
Y.
,
Yin
,
G.
, and
Huang
,
Z.
,
2017
, “
Experimental and Modeling Study on Ignition Delay Times of Dimethoxy Methane/n-Heptane Blends
,”
Fuel
,
189
, pp.
350
357
.10.1016/j.fuel.2016.10.106
50.
Zhang
,
Z.
,
Hu
,
E.
,
Pan
,
L.
,
Chen
,
Y.
,
Gong
,
J.
, and
Huang
,
Z.
,
2014
, “
Shock-Tube Measurements and Kinetic Modeling Study of Methyl Propanoate Ignition
,”
Energy Fuels
,
28
(
11
), pp.
7194
7202
.10.1021/ef501527z
51.
Ra
,
Y.
, and
Reitz
,
R. D.
,
2008
, “
A Reduced Chemical Kinetic Model for IC Engine Combustion Simulations With Primary Reference Fuels
,”
Combust. Flame
,
155
(
4
), pp.
713
738
.10.1016/j.combustflame.2008.05.002
52.
Selim
,
H.
,
Mohamed
,
S. Y.
,
Hansen
,
N.
, and
Sarathy
,
S. M.
,
2017
, “
Premixed Flame Chemistry of a Gasoline Primary Reference Fuel Surrogate
,”
Combust. Flame
,
179
, pp.
300
311
.10.1016/j.combustflame.2017.02.008
53.
Richter
,
S.
,
Kathrotia
,
T.
,
Braun-Unkhoff
,
M.
,
Naumann
,
C.
, and
Köhler
,
M.
,
2021
, “
Influence of Oxymethylene Ethers (OMEn) in Mixtures With a Diesel Surrogate
,”
Energies
,
14
(
23
), p.
7848
.10.3390/en14237848
54.
Kathrotia
,
T.
,
Richter
,
S.
,
Naumann
,
C.
,
Slavinskaya
,
N.
,
Methling
,
T.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2019
, “
Reaction Model Development for Synthetic Jet Fuels – Surrogate Fuels as a Flexible Tool to Predict Their Performance
,”
ASME
Paper No. GT2018-76997.10.1115/GT2018-76997
You do not currently have access to this content.