Abstract

Among the technologies for carbon capture and storage (CCS) from natural gas, oxy-turbine plants are a very promising solution thanks to the high efficiency, absence of stack, and nearly 100% capture rate. This paper investigates the efficiency which can be achieved by the semi-closed oxy-combustion combined cycle (SCOC-CC) with state-of-the-art and future blade materials. In particular, the analysis considers class-H turbine superalloys with a maximum blade wall temperature of 900 °C and ceramic matrix composites with blade wall temperatures of 1300 °C. Sensitivity analyses are performed to determine the optimal pressure ratio and turbine inlet temperature. The results indicate that state-of-the-art superalloys allow the SCOC-CC to achieve 54% net electric efficiency with a 96% carbon capture rate, while ceramic matrix composite (CMC) blades boost the efficiency up to 60%. For both cases, critical factors are the high temperature gradients across the blade coatings (thermal barrier coating (TBC) for superalloy, environmental barrier coating (EBC) for CMC) and the blade thickness caused by the large heat flux exchanged between hot gases and cooling flows.

References

1.
IEAGHG
,
2015
,
Oxy-Combustion Turbine Power Plants
,
IEAGHG
,
Cheltenham, UK
.
2.
Scaccabarozzi
,
R.
,
Gatti
,
M.
, and
Martelli
,
E.
,
2016
, “
Thermodynamic Analysis and Numerical Optimization of the NET Power Oxy-Combustion Cycle
,”
Appl. Energy
,
178
, pp.
505
526
.10.1016/j.apenergy.2016.06.060
3.
Yang
,
H. J.
,
Kang
,
D. W.
,
Ahn
,
J. H.
, and
Kim
,
T. S.
,
2012
, “
Evaluation of Design Performance of the Semi-Closed Oxy-Fuel Combustion Combined Cycle
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
111702
.10.1115/1.4007322
4.
Padture
,
N. P.
,
2016
, “
Advanced Structural Ceramics in Aerospace Propulsion
,”
Nat. Mater.
,
15
(
8
), pp.
804
809
.10.1038/nmat4687
5.
CFM International, 2021, “CFM Press Release of 6th February 2018,” CFM International, Cincinnati, OH, accessed Oct. 27, 2021, https://www.cfmaeroengines.com/press-articles/leap-engine-surpasses-600000-flight-hours/
6.
GE Aerospace, 2021, “GE Press Release of January 19th 2017,” GE Aerospace, accessed Oct. 27, 2021, https://www.geaviation.com/press-release/ge9x-engine-family/dust-vs-cmcs-cool-winner
7.
Chiesa
,
P.
, and
Macchi
,
E.
,
2004
, “
A Thermodynamic Analysis of Different Options to Break 60% Electric Efficiency in Combined Cycle Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
770
785
.10.1115/1.1771684
8.
Grady
,
J. E.
,
2018
, “CMC Research at NASA Glenn in 2018: Recent Progress and Plans,” U.S. Advanced Ceramics Association at the University of Dayton Research Institute, Dayton, OH, accessed Oct. 27, 2021, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180004775.pdf
9.
Martelli
,
E.
,
Girardi
,
M.
, and
Chiesa
,
P.
,
2022
, “
Breaking 70% Net Electric Combined Cycle Efficiency With CMC Gas Turbine Blades
,”
ASME
Paper No. GT2022-81118.10.1115/GT2022-81118
10.
Boyle
,
R. J.
,
Parikh
,
A. H.
,
Halbig
,
M. C.
, and
Nagpal
,
V. K.
,
2013
, “
Design Considerations for Ceramic Matrix Composite High Pressure Turbine Blades
,”
ASME
Paper No. GT2019-91787.10.1115/GT2019-91787
11.
Vedula
,
V.
, Shi, J., Jarmon, D., Ochs, S., Oni, L., Lawton, T., Green, K., et al.,
2005
, “
Ceramic Matrix Composite Turbine Vanes for Gas Turbine Engines
,”
ASME
Paper No. GT2005-68229.10.1115/GT2005-68229
12.
White
,
V.
, and
Allam
,
R. J.
,
2008
, “Purification of Carbon Dioxide,” U.S. Patent No. 20080173585A1.
13.
Aspentech, 2021, “Aspen Technology, Inc.,” Aspentech, Bedford, MA, accessed Nov. 2, 2021, https://www.aspentech.com/en
14.
Horlock
,
J. H.
,
2003
, “
Advanced Gas Turbine Cycles: A Brief Review of Power Generation Thermodynamics
,”
Adv. Gas Turbine Cycles A Br. Rev. Power Gener. Thermodyn
, pp.
1
203
.10.1016/B978-0-08-044273-0.X5000-7
15.
Wilhelmsen
,
Ø.
,
Skaugen
,
G.
,
Jørstad
,
O.
, and
Li
,
H.
,
2012
, “
Evaluation of SPUNG# and Other Equations of State for Use in Carbon Capture and Storage Modelling
,”
Energy Procedia
,
23
, pp.
236
245
.10.1016/j.egypro.2012.06.024
16.
Zhao
,
Q.
,
Mecheri
,
M.
,
Neveux
,
T.
,
Privat
,
R.
, and
Jaubert
,
J. N.
,
2017
, “
Selection of a Proper Equation of State for the Modeling of a Supercritical CO2 Brayton Cycle: Consequences on the Process Design
,”
Ind. Eng. Chem. Res.
,
56
(
23
), pp.
6841
6853
.10.1021/acs.iecr.7b00917
17.
Macchi
,
E.
, and
Perdichizzi
,
A.
,
1981
, “
Efficiency Prediction for Axial-Flow Turbines Operating With Nonconventional Fluids
,”
ASME J. Eng. Power
,
103
(
4
), pp.
718
724
.10.1115/1.3230794
18.
Martelli
,
E.
,
Kreutz
,
T.
,
Carbo
,
M.
,
Consonni
,
S.
, and
Jansen
,
D.
,
2011
, “
Shell Coal IGCCS With Carbon Capture: Conventional Gas Quench Vs. innovative Configurations
,”
Appl. Energy
,
88
(
11
), pp.
3978
3989
.10.1016/j.apenergy.2011.04.046
19.
Gazzani
,
M.
,
Chiesa
,
P.
,
Martelli
,
E.
,
Sigali
,
S.
, and
Brunetti
,
I.
,
2014
, “
Using Hydrogen as Gas Turbine Fuel: Premixed Versus Diffusive Flame Combustors
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
051504
.10.1115/1.4026085
20.
Scaccabarozzi
,
R.
,
Martelli
,
E.
,
Gatti
,
M.
,
Chiesa
,
P.
,
Pini
,
M.
, and
De Servi
,
C. M.
,
2019
, “
Conceptual Thermo-Fluid Dynamic Design of the Cooled Supercritical CO2 Turbine for the Allam Cycle
,”
International Conference on Applied Energy 2019
, Västerås, Sweden, Aug. 12–15, pp.
1
8
.https://re.public.polimi.it/retrieve/handle/11311/1160294/582421/Scacca_ICAE.pdf
21.
Wee
,
S.
,
Do
,
J.
,
Kim
,
K.
,
Lee
,
C.
,
Seok
,
C.
,
Choi
,
B.-G.
,
Choi
,
Y.
, and
Kim
,
W.
,
2020
, “
Review on Mechanical Thermal Properties of Superalloys and Thermal Barrier Coating Used in Gas Turbines
,”
Appl. Sci.
,
10
(
16
), p.
5476
.10.3390/app10165476
22.
Ishizaka
,
K.
,
Saitoh
,
K.
,
Ito
,
E.
,
Yuri
,
M.
, and
Masada
,
J.
,
2017
, “
Key Technologies for 1700 °C Class Ultra High Temperature Gas Turbine
,”
Mitsubishi Heavy Ind. Tech Rev.
,
54
(
3
), pp.
23
32
.https://www.mhi.co.jp/technology/review/pdf/e543/e543023.pdf
23.
Gülen
,
S. C.
,
2021
, “
Steam Turbine—Quo Vadis?
,”
Front. Energy Res.
,
8
, pp.
1
20
.10.3389/fenrg.2020.612731
24.
Martelli
,
E.
,
Alobaid
,
F.
, and
Elsido
,
C.
,
2021
, “
Design Optimization and Dynamic Simulation of Steam Cycle Power Plants: A Review
,”
Front. Energy Res.
,
9
, pp.
1
31
.10.3389/fenrg.2021.676969
25.
Gibson
,
S. M.
,
2014
, “
Oxygen Plants for Gasification
,”
New Horizons in Gasification: The 12th European Gasification Conference
, Rotterdam, The Netherlands, Mar. 10–13, pp.
1
9
.10.1515/gps-2013-0105
26.
Gas Turbine World
,
2021
,
2021 GTW Handbook
, Vol.
36
,
Pequot Publication
, Fairfield, CT.
27.
IEAGHG
,
2020
,
2020-07 Update Techno-Economic Benchmarks for Fossil Fuel-Fired Power Plants With CO2 Capture
,
IEAGHG
,
Cheltenham, UK
.
28.
Horlock
,
J. H.
,
Watson
,
D. T.
, and
Jones
,
T. V.
,
2001
, “
Limitations on Gas Turbine Performance Imposed by Large Turbine Cooling Flows
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
487
494
.10.1115/1.1373398
29.
James
,
R.
,
Zoelle
,
A.
,
Keairns
,
D.
,
Turner
,
M.
,
Woods
,
M.
, and
Kuehn
,
N.
,
2019
, “
Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity
,” National Energy Technology Laboratory (NETL), Pittsburgh, PA, accessed Oct. 10, 2022, https://www.netl.doe.gov/energy-analysis/details?id=1024
You do not currently have access to this content.