Abstract

Prominent approaches for the computation of thermoacoustic stability are hybrid methods like the linearized Navier–Stokes equations (LNSE) or the linearized Euler equations (LEE). The transient fluctuations around a precomputed steady-state mean flow field solved with these sets of equations naturally include the energy transition between acoustic, vertical, and entropic modes. It is common practice to account for flame-acoustic interactions by applying measured or computed flame transfer functions (FTF) as a volumetric source term proportional to the mean heat release rate in the energy equation. However, the underlying assumption of a static flame is the root cause of spurious entropy production, which may ultimately falsify the thermoacoustic stability predictions. In the present paper, a methodology to include arbitrary flame movement in the governing set of equations is presented. The procedure makes use of an arbitrary Lagrangian-Eulerian (ALE) description of conservation equations and is demonstrated for the Euler equations. The resulting set of linear perturbation equations is then applied to two test cases. First, the frequency response of a one-dimensional premixed air-methane flame is evaluated. Secondly, the frequency response of the first longitudinal eigenmode of an experimental premixed, swirl-stabilized combustor is computed. To demonstrate the reduction of spurious entropy waves, the results are compared to those of the classic LEE.

References

1.
Culick
,
F.
,
2002
,
Dynamics of Combustion Systems: Fundamentals, Acoustics and Control
, RTO, Neuilly-sur-Seine, France.
2.
Hernández
,
I.
,
Staffelbach
,
G.
,
Poinsot
,
T.
,
Román Casado
,
J. C.
, and
Kok
,
J. B.
,
2013
, “
LES and Acoustic Analysis of Thermo-Acoustic Instabilities in a Partially Premixed Model Combustor
,”
C. R. Méc.
,
341
(
1–2
), pp.
121
130
. 10.1016/j.crme.2012.11.003
3.
Moeck
,
J. P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2019
, “
Nonlinear Thermoacoustic Mode Synchronization in Annular Combustors
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5343
5350
.10.1016/j.proci.2018.05.107
4.
Wolf
,
P.
,
Balakrishnan
,
R.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y.
, and
Poinsot
,
T.
,
2012
, “
Using LES to Study Reacting Flows and Instabilities in Annular Combustion Chambers
,”
Flow Turbul. Combust.
,
88
(
1–2
), pp.
191
206
.10.1007/s10494-011-9367-7
5.
Kornilov
,
V.
,
Rook
,
R.
,
ten Thije Boonkkamp
,
J.
, and
de Goey
,
L.
,
2009
, “
Experimental and Numerical Investigation of the Acoustic Response of Multi-Slit Bunsen Burners
,”
Combust. Flame
,
156
(
10
), pp.
1957
1970
. 10.1016/j.combustflame.2009.07.017
6.
Courtine
,
E.
,
Selle
,
L.
, and
Poinsot
,
T.
,
2015
, “
DNS of Intrinsic ThermoAcoustic Modes in Laminar Premixed Flames
,”
Combust. Flame
,
162
(
11
), pp.
4331
4341
. 10.1016/j.combustflame.2015.07.002
7.
Gruber
,
A.
,
Bothien
,
M. R.
,
Ciani
,
A.
,
Aditya
,
K.
,
Chen
,
J. H.
, and
Williams
,
F. A.
,
2021
, “
Direct Numerical Simulation of Hydrogen Combustion at Auto-Ignitive Conditions: Ignition, Stability and Turbulent Reaction-Front Velocity
,”
Combust. Flame
,
229
, p.
111385
.10.1016/j.combustflame.2021.02.031
8.
Avdonin
,
A.
,
Meindl
,
M.
, and
Polifke
,
W.
,
2019
, “
Thermoacoustic Analysis of a Laminar Premixed Flame Using a Linearized Reactive Flow Solver
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5307
5314
.10.1016/j.proci.2018.06.142
9.
Nicoud
,
F.
, and
Wieczorek
,
K.
,
2009
, “
About the Zero Mach Number Assumption in the Calculation of Thermoacoustic Instabilities
,”
Int. J. Spray Combust. Dyn.
,
1
(
1
), pp.
67
111
. 10.1260/175682709788083335
10.
Innocenti
,
A.
,
Andreini
,
A.
, and
Facchini
,
B.
,
2015
, “
Numerical Identification of a Premixed Flame Transfer Function and Stability Analysis of a Lean Burn Combustor
,”
Energy Procedia
,
82
, pp.
358
365
.10.1016/j.egypro.2015.11.803
11.
Kim
,
S.-K.
,
Kim
,
D.
, and
Cha
,
D. J.
,
2018
, “
Finite Element Analysis of Self-Excited Instabilities in a Lean Premixed Gas Turbine Combustor
,”
Int. J. Heat Mass Transfer
,
120
, pp.
350
360
.10.1016/j.ijheatmasstransfer.2017.12.021
12.
Zhu
,
R.
,
Pan
,
D.
,
Ji
,
C.
,
Zhu
,
T.
,
Lu
,
P.
, and
Gao
,
H.
,
2020
, “
Combustion Instability Analysis on a Partially Premixed Swirl Combustor by Thermoacoustic Experiments and Modeling
,”
Energy
,
211
, p.
118884
.10.1016/j.energy.2020.118884
13.
Strobio Chen
,
L.
,
Bomberg
,
S.
, and
Polifke
,
W.
,
2016
, “
Propagation and Generation of Acoustic and Entropy Waves Across a Moving Flame Front
,”
Combust. Flame
,
166
, pp.
170
180
.10.1016/j.combustflame.2016.01.015
14.
Meindl
,
M.
,
Silva
,
C. F.
, and
Polifke
,
W.
,
2021
, “
On the Spurious Entropy Generation Encountered in Hybrid Linear Thermoacoustic Models
,”
Combust. Flame
,
223
, pp.
525
540
.10.1016/j.combustflame.2020.09.018
15.
Schulze
,
M.
, “
Linear Stability Assessment of Cryogenic Rocket Engines
,”
Ph.D. thesis
,
Technical University of Munich
,
Munich, Germany
.10.1177/1756827717695281
16.
Hirt
,
C.
,
Amsden
,
A.
, and
Cook
,
J.
,
1974
, “
An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds
,”
J. Comput. Phys.
,
14
(
3
), pp.
227
253
.10.1016/0021-9991(74)90051-5
17.
Donea
,
J.
,
Giuliani
,
S.
, and
Halleux
,
J.
,
1982
, “
An Arbitrary Lagrangian-Eulerian Finite Element Method for Transient Dynamic Fluid-Structure Interactions
,”
Comput. Methods Appl. Mech. Eng.
,
33
(
1–3
), pp.
689
723
.10.1016/0045-7825(82)90128-1
18.
Shanbhogue
,
S.
,
Shin
,
D.-H.
,
Hemchandra
,
S.
,
Plaks
,
D.
, and
Lieuwen
,
T.
,
2009
, “
Flame Sheet Dynamics of Bluff-Body Stabilized Flames During Longitudinal Acoustic Forcing
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1787
1794
.10.1016/j.proci.2008.06.034
19.
Steinbacher
,
T.
,
Albayrak
,
A.
,
Ghani
,
A.
, and
Polifke
,
W.
,
2019
, “
Consequences of Flame Geometry for the Acoustic Response of Premixed Flames
,”
Combust. Flame
,
199
, pp.
411
428
.10.1016/j.combustflame.2018.10.039
20.
Schwing
,
J.
,
Grimm
,
F.
, and
Sattelmayer
,
T.
,
2012
, “
A Model for the Thermo-Acoustic Feedback of Transverse Acoustic Modes and Periodic Oscillations in Flame Position in Cylindrical Flame Tubes
,”
ASME
Paper No. GT2012-68775.10.1115/GT2012-68775
21.
Zellhuber
,
M.
,
Schwing
,
J.
,
Schuermans
,
B.
,
Sattelmayer
,
T.
, and
Polifke
,
W.
,
2014
, “
Experimental and Numerical Investigation of Thermoacoustic Sources Related to High-Frequency Instabilities
,”
Int. J. Spray Combust. Dyn.
,
6
(
1
), pp.
1
34
.10.1260/1756-8277.6.1.1
22.
Donea
,
J.
, and
Huerta
,
A.
,
2003
,
Finite Element Methods for Flow Problems
,
Wiley, Ltd
, Chichester, UK, Chap.
1
.
23.
Mankbadi
,
R. R.
,
Hixon
,
R.
,
Shih
,
S.-H.
, and
Povinelli
,
L. A.
,
1998
, “
Use of Linearized Euler Equations for Supersonic Jet Noise Prediction
,”
AIAA J.
,
36
(
2
), pp.
140
147
.10.2514/2.7495
24.
Bailly
,
C.
, and
Juve
,
D.
,
2000
, “
Numerical Solution of Acoustic Propagation Problems Using Linearized Euler Equations
,”
AIAA J.
,
38
(
1
), pp.
22
29
.10.2514/2.949
25.
Bogey
,
C.
,
Bailly
,
C.
, and
Juvé
,
D.
,
2002
, “
Computation of Flow Noise Using Source Terms in Linearized Euler's Equations
,”
AIAA J.
,
40
(
2
), pp.
235
243
.10.2514/2.1665
26.
Kathan
,
R.
,
Morgenweck
,
D.
,
Kaess
,
R.
, and
Sattelmayer
,
T.
,
2013
, “
Validation of the Computation of Rocket Nozzle Admittances With Linearized Euler Equations
,”
4th European Conference for Aerospace Sciences, St. Petersburg, Russia
, July 4–8, pp.
135
148
.10.1051/eucass/201304135
27.
Leyko
,
M.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2009
, “
Comparison of Direct and Indirect Combustion Noise Mechanisms in a Model Combustor
,”
AIAA J.
,
47
(
11
), pp.
2709
2716
. 10.2514/1.43729
28.
Gikadi
,
J.
,
Sattelmayer
,
T.
, and
Peschiulli
,
A.
,
2012
, “
Effects of the Mean Flow Field on the Thermo-Acoustic Stability of Aero-Engine Combustion Chambers
,”
ASME
Paper No. GT2012-69612.10.1115/GT2012-69612
29.
Schulze
,
M.
,
Hummel
,
T.
,
Klarmann
,
N.
,
Berger
,
F.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2016
, “
Linearized Euler Equations for the Prediction of Linear High-Frequency Stability in Gas Turbine Combustors
,”
ASME
Paper No. GT2016-57818.10.1115/GT2016-57818
30.
Kaiser
,
T. L.
,
Poinsot
,
T.
, and
Oberleithner
,
K.
,
2018
, “
Stability and Sensitivity Analysis of Hydrodynamic Instabilities in Industrial Swirled Injection Systems
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p. 051506.10.1115/1.4038283
31.
Hofmeister
,
T.
,
Hummel
,
T.
,
Berger
,
F.
,
Klarmann
,
N.
, and
Sattelmayer
,
T.
,
2021
, “
Elimination of Numerical Damping in the Stability Analysis of Noncompact Thermoacoustic Systems With Linearized Euler Equations
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p. 031013.10.1115/1.4049651
32.
Hummel
,
T.
,
Berger
,
F.
,
Hertweck
,
M.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors - Part II: Modeling and Analysis
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
071502
.10.1115/1.4035592
33.
Bibrzycki
,
J.
,
Poinsot
,
T.
, and
Zajdel
,
A.
,
2010
, “
Investigation of Laminar Flame Speed of CH4/N2/O2 and CH4/CO2/O2 Mixtures Using Reduced Chemical Kinetic Mechanisms
,”
Archivum Combustionis
,
30
(
4
), pp.
287
296
.https://www.researchgate.net/publication/50411359_Investigation_of_laminar_flame_speed_of_CH4N2O2_and_CH4CO2O2_mixtures_using_reduced_chemical_kinetic_mechanisms
34.
Sangl
,
J.
,
Mayer
,
C.
, and
Sattelmayer
,
T.
,
2011
, “
Dynamic Adaptation of Aerodynamic Flame Stabilization of a Premix Swirl Burner to Fuel Reactivity Using Fuel Momentum
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), p.
071501
.10.1115/1.4002659
35.
Mayer
,
C.
,
Sangl
,
J.
,
Sattelmayer
,
T.
,
Lachaux
,
T.
, and
Bernero
,
S.
,
2012
, “
Study on the Operational Window of a Swirl Stabilized Syngas Burner Under Atmospheric and High Pressure Conditions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
031506
.10.1115/1.4004255
36.
Schwing
,
J.
,
Sattelmayer
,
T.
, and
Noiray
,
N.
,
2011
, “
Interaction of Vortex Shedding and Transverse High-Frequency Pressure Oscillations in a Tubular Combustion Chamber
,”
ASME
Paper No. GT2011-45246.10.1115/GT2011-45246
37.
Schwing
,
J.
, and
Sattelmayer
,
T.
,
2013
, “
High-Frequency Instabilities in Cylindrical Flame Tubes: Feedback Mechanism and Damping
,”
ASME
Paper No. GT2013-94064.10.1115/GT2013-94064
38.
Berger
,
F. M.
,
Hummel
,
T.
,
Hertweck
,
M.
,
Kaufmann
,
J.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors-Part I: Experimental Investigation of Local Flame Response
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
071501
.10.1115/1.4035591
39.
Berger
,
F. M.
,
Hummel
,
T.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2018
, “
Pulsation-Amplitude-Dependent Flame Dynamics of High-Frequency Thermoacoustic Oscillations in Lean-Premixed Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041507
.10.1115/1.4038036
40.
Hummel
,
T.
,
Berger
,
F.
,
Stadlmair
,
N.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2018
, “
Extraction of Linear Growth and Damping Rates of High-Frequency Thermoacoustic Oscillations From Time Domain Data
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
051505
.10.1115/1.4038240
41.
Hofmeister
,
T.
,
Hummel
,
T.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2019
, “
Modeling and Quantification of Acoustic Damping Induced by Vortex Shedding in Non-Compact Thermoacoustic Systems
,”
ASME J. Eng. Gas Turbines Power
, 142(3), p.
031016
.10.1115/GT2019-90241
42.
Hofmeister
,
T.
,
Hummel
,
T.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2019
, “
Quantification of Energy Transformation Processes Between Acoustic and Hydrodynamic Modes in Non-Compact Thermoacoustic Systems Via a Helmholtz-Hodge Decomposition Approach
,”
ASME
Paper No. GT2019-90240.10.1115/GT2019-90240
You do not currently have access to this content.