Abstract

By installing an intercooler and a recuperator, the intercooled recuperative aero engine (IRA) has the advantage of improving thermal efficiency as well as reducing fuel consumption and emissions. Both the aerodynamic and thermal performance of the intercooler and recuperator, as well as their configuration have decisive effects on the performance of the engine. This paper first describes the overall parameters and the structural scheme for the IRA engine. Then numerical simulation and modeling tests were conducted to investigate the performance of different types of matrices for the intercooler. Results show that the cross-corrugated matrix, compared to the tube matrix, had higher effectiveness and lower pressure loss. For the recuperative system, which includes the matrix module and the pipe system, a porous medium model was established for the U-tube recuperator matrix according to the experimental results. With this model, the optimized arrangement of the eight recuperator modules in the exhaust nozzle was achieved. After optimization, the gas almost equally flows through each matrix module, which can ensure the heat transfer effectiveness as design. A flow network was built up to optimize the pipe system of the recuperator. With this network, the diameter of the pipes inside the air supply/backflow ducting system was optimized to make the coolant flow through each matrix module matching the gas side.

References

1.
Lee
,
D. S.
,
Fahey
,
D. W.
,
Skowron
,
A.
,
Allen
,
M. R.
,
Burkhardt
,
U.
,
Chen
,
Q.
, et al.,
2020
, “
The Contribution of Global Aviation to Anthropogenic Climate Forcing for 2000 to 2018
,”
Atmos. Environ.
, 244, p.
117834
.10.1016/j.atmosenv.2020.117834
2.
Sausen
,
R.
, and
Schumann
,
U.
,
2000
, “
Estimates of the Climate Response to Aircraft CO2 and NOx Emissions Scenarios
,”
Clim. Change
,
44
(
1/2
), pp.
27
58
.10.1023/A:1005579306109
3.
ACARE
,
2012
,
Realising Europe's Vision for Aviation, Strategic Research & Innovation Agenda
, Vol.
1
,
Advisory Council for Aviation Research and Innovation
,
Europe
.
4.
Grönstedt
,
T.
, et al.,
2016
, “
Ultralow Emission Technology Innovations for Mid-Century Aircraft Turbine Engines
,”
ASME
Paper No. GT2016-56123.10.1115/GT2016-56123
5.
Rolt
,
A.
,
Sethi
,
V.
,
Jacob
,
F.
,
Sebastiampillai
,
J.
,
Xisto
,
C.
,
Grönstedt
,
T.
,
Raffaelli
,
L.
, et al.,
2017
, “
Scale Effects on Conventional and Intercooled Turbofan Engine Performance
,”
Aeronaut. J.
,
121
(
1242
), pp.
1162
1185
.10.1017/aer.2017.38
6.
Camilleri
,
W.
,
Anselmi
,
E.
,
Sethi
,
V.
,
Laskaridis
,
P.
,
Rolt
,
A.
, and
Cobas
,
P.
,
2015
, “
Performance Characteristics and Optimisation of a Geared Intercooled Reverse Flow Core Engine
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
229
(
2
), pp.
269
279
.10.1177/0954410014530679
7.
Wilfert
,
G.
,
Sieber
,
J.
,
Rolt
,
A.
,
Baker
,
N.
,
Touyeras
,
A
, and
Colantuoni
,
S.
, “
New Environmental Friendly Aero Engine Core Concepts
,” ISABE 2007 Proceedings, Paper No.
ISABE-2007-1120
.https://www.semanticscholar.org/paper/New-Environmental-Friendly-Aero-Engine-Core-Baker-Rolt/86507ade9cd3ba17edab78ae6ec35655f99af2d6
8.
Rolt
,
A. M.
, and
Baker
,
N. J.
, “
Intercooled Turbofan Engine Design and Technology Research in the EU Framework 6 NEWAC Programme
,” ISABE 2007 Proceedings, Paper No.
ISABE-2009-1278
.https://www.semanticscholar.org/paper/Intercooled-turbofan-engine-design-and-technology-6-Rolt-Baker/3ffea2a3965f2cf35aeb3e7945c168b45fc05313
9.
Lundbladh
,
A.
, and
Sjunnesson
,
A.
, “
Heat Exchanger Weight and Efficiency Impact on Jet Engine Transport Applications
,”
Proceedings of the ISABE 2003
, Cleveland, OH, Aug. 31–Sept. 2, Paper No. ISABE-2003-1122.https://www.semanticscholar.org/paper/Heat-Exchanger-Weight-and-Efficiency-Impact-on-Jet-Lundbladh-A.Sjunnesson/c4e4af40789c0a6906e2d2fb49c27994b1294cae
10.
Hao
,
G.
,
Zhanxue
,
W.
, and
Zengwen
,
L.
,
2012
, “
Study on Thermodynamic Cycle Parameter Matching for Intercooled Recuperated Aero-Engine
,”
J. Aerosp. Power
,
27
(
8
), pp.
1809
1814
.
11.
Papadopoulos
,
P.
, and
Pilidis
,
P.
,
2000
, “
Introduction of Intercooling in a High Bypass Jet Engine
,”
ASME
Paper No. 2000-GT-150.10.1115/2000-GT-150
12.
Shinmyo
,
T.
,
Teramoto
,
S.
,
Okamoto
,
K.
, and
Nagashima
,
T.
,
2014
, “
Optimization of Intercooled Turbofan Jet Thermodynamic Cycle Considering Weight Penalty and Pressure Loss of Heat Exchanger
,”
Trans. Jpn. Soc. Aero. Space Sci.
,
57
(
5
), pp.
247
254
.10.2322/tjsass.57.247
13.
Ito
,
T.
,
Teramoto
,
S.
, and
Okamoto
,
K.
,
2014
, “
Effects of Heat Exchanger Characteristics on Optimized Intercooled Turbofan Engine Cycles
,”
Int. J. Gas Turbine Propul. Power Syst.
,
6
(
3
), pp.
16
22
.10.38036/jgpp.6.3_16
14.
Zhao
,
X.
,
2013
, “Assessment of the Performance Potential for a Two-Pass Cross Flow Intercooler for Aero Engine Application,” ISABE 2007 Proceedings, Paper No.
ISABE-2013-1215
.https://core.ac.uk/download/pdf/70603176.pdf
15.
Zhao
,
X.
, and
Grönstedt
,
T.
,
2015
, “
Conceptual Design of a Two-Pass Cross-Flow Aeroengine Intercooler
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
229
(
11
), pp.
2006
2023
.10.1177/0954410014563587
16.
Zhao
,
X.
,
Tokarev
,
M.
,
Adi Hartono
,
E.
,
Chernoray
,
V.
, and
Grönstedt
,
T.
,
2017
, “
Experimental Validation of the Aerodynamic Characteristics of an Aero-Engine Intercooler
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
2017
.10.1115/1.4034964
17.
Gillespie
,
D. R. H.
,
Kwan
,
P.
,
Rolt
,
A.
, and
Stieger
,
R. D.
,
2013
, “
Aerodynamic Loss Mechanisms in an Aero Engine Intercooler
,” International Symposium on Air Breathing Engines 2013, Paper No. ISABE-2013-1213.
18.
Schönenborn
,
H.
,
Ebert
,
E.
,
Simon
,
B.
, and
Storm
,
P.
,
2004
, “
Thermo-Mechanical Design of a Heat Exchanger for a Recuperative Aero Engine
,”
ASME
Paper No. GT2004-53696.10.1115/GT2004-53696
19.
Missirlis
,
D.
,
Yakinthos
,
K.
,
Seite
,
O.
, and
Goulas
,
A.
,
2010
, “
Modeling an Installation of Recuperative Heat Exchangers for an Aero Engine
,”
ASME
Paper No. GT2010-22263.10.1115/GT2010-22263
20.
Yakinthos
,
K.
,
Missirlis
,
D.
,
Palikaras
,
A.
,
Storm
,
P.
,
Simon
,
B.
,
Goulas
,
A.
, et al.,
2007
, “
Optimization of the Design of Recuperative Heat Exchangers in the Exhaust Nozzle of an Aero Engine
,”
Appl. Math. Modell.
,
31
(
11
), pp.
2524
2541
.10.1016/j.apm.2006.10.008
21.
Misirlis
,
D.
, et al.,
2016
, “
Intercooled Recuperated Aero Engine: Development and Optimization of Innovative Heat Exchanger Concepts
,”
Second ECATS Conference
, Nov. 7–9, Athens, Greece, pp.
37
40
.https://www.researchgate.net/publication/310368938_Intercooled_Recuperated_Aero_Engine_development_and_optimization_of_innovative_heat_exchanger_concepts
22.
Gangtuan
,
L.
,
Ying
,
H.
, and
Hao
,
G.
,
2016
, “
Study of an Intercooled Recuperated Turbofan Engine With High Bypass Ratio
,”
Gas Turbine Exp. Res.
,
29
(
1
), pp.
1
9
.
23.
Zeng
,
Q.-W.
,
Feng
,
S.-T.
, and
Ma
,
J.
, “
Digital Mock-Up Design of the Intercooled Recuperated Cycle Aero-Engine
,”
Gas Turbine Exp. Res.
,
29
(
1
), pp.
21
24
.
24.
Chuanchen
,
T.
,
Decang
,
L.
, and
Xiaohua
,
Z.
,
2016
, “
Installation Layout of Recuperator in Nozzle for an Intercooled Recuperated Engine
,”
Gas Turbine Exp. Res.
,
29
(
1
), pp.
41
46
.
25.
Xiyue
,
L.
,
2016
, “
Research on Flow and Heat Transfer Characteristics of Compact Heat Exchanger in Intercooled Recuperated Engine
,” Ph.D. thesis,
Nanjing University of Aeronautics and Astronautics
,
Nanjing, China
.
26.
Lei
,
Z.
,
Hongyi
,
F.
, et al.,
2017
, “
Heat Transfer Performance of Intercooler for an Intercooled and Recuperated Cycle Engine
,”
Gas Turbine Exp. Res.
,
30
(
2
), pp.
11
16
.
27.
Decang
,
L.
,
Songtao
,
F.
, et al.,
2017
, “
Pipe System Design Optimization for Recuperator of Intercooler Recuperated Gas Turbine Engine
,”
Gas Turbine Exp. Res.
,
30
(
2
), pp.
47
52
.
You do not currently have access to this content.