Abstract

In this study, three cylindrical combustion chambers with different diameter-to-depth ratios were designed to accelerate the flame propagation and enhance the combustion ratio of CH4 in a stoichiometric natural gas engine with exhaust gas recirculation (EGR). The effects of the diameter-to-depth ratio on the combustion and emission and the interaction between the flow field distribution and flame propagation were investigated numerically. The results showed that the value of the swirl ratio and turbulent kinetic energy (TKE) near the top dead center (TDC) could be increased continuously with a smaller diameter-to-depth ratio, which was conducive to promoting the uniform flame spread in the radial direction and enhanced the combustion efficiency. The peaks of pressure, heat release rate (HRR), and temperature dramatically increased by using the cylindrical chamber with a higher swirl ratio and higher TKE in the stoichiometric natural gas engines, thereby allowing more fuel energy to be released near the TDC in the chamber. The cylindrical chamber with the diameter-to-depth ratio of 2.36 displayed a higher peak value of combustion pressure and temperature, smaller CH4 and CO emissions, but more NOx emission, compared to other chambers. Moreover, the raised bottom bulge of the piston distorted the flame front, which accelerated the flame speed in the vertical direction. The CA50 was therefore advanced to the TDC. Thus, the cylindrical chamber with the increased squish area and the raised bottom bulge was conducive for the stoichiometric natural gas engine with EGR.

References

1.
Collantes
,
G.
, and
Melaina
,
M. W.
,
2011
, “
The Co-Evolution of Alternative Fuel Infrastructure and Vehicles: A Study of the Experience of Argentina With Compressed Natural Gas
,”
Energy Policy
,
39
(
2
), pp.
664
675
.10.1016/j.enpol.2010.10.039
2.
Liu
,
J.
,
Ulishney
,
C. J.
, and
Dumitrescu
,
C. E.
,
2021
, “
Experimental Investigation of a Heavy-Duty Natural Gas Engine Performance Operated at Stoichiometric and Lean Operations
,”
Energy Convers. Manage.
,
243
, p.
114401
.10.1016/j.enconman.2021.114401
3.
Korb
,
B.
,
Kuppa
,
K.
,
Nguyen
,
H. D.
,
Dinkelacker
,
F.
, and
Wachtmeister
,
G.
,
2020
, “
Experimental and Numerical Investigations of Charge Motion and Combustion in Lean-Burn Natural Gas Engines
,”
Combust. Flame
,
212
, pp.
309
322
.10.1016/j.combustflame.2019.11.005
4.
Yang
,
L.-P.
,
Song
,
E.-Z.
,
Ding
,
S.-L.
,
Brown
,
R. J.
,
Marwan
,
N.
, and
Ma
,
X.-Z.
,
2016
, “
Analysis of the Dynamic Characteristics of Combustion Instabilities in a Pre-Mixed Lean-Burn Natural Gas Engine
,”
Appl. Energy
,
183
, pp.
746
759
.10.1016/j.apenergy.2016.09.037
5.
Reddy
,
H.
, and
Abraham
,
J.
,
2010
, “
Ignition Kernel Development Studies Relevant to Lean-Burn Natural Gas Engines
,”
Fuel
,
89
(
11
), pp.
3262
3271
.10.1016/j.fuel.2010.05.040
6.
Ibrahim
,
A.
, and
Bari
,
S.
,
2009
, “
A Comparison Between EGR and Lean-Burn Strategies Employed in a Natural Gas SI Engine Using a Two-Zone Combustion Model
,”
Energy Convers. Manage.
,
50
(
12
), pp.
3129
3139
.10.1016/j.enconman.2009.08.012
7.
Liu
,
X.
,
Wang
,
H.
,
Zheng
,
Z.
, and
Yao
,
M.
,
2021
, “
Numerical Investigation on the Combustion and Emission Characteristics of a Heavy-Duty Natural Gas-Diesel Dual-Fuel Engine
,”
Fuel
,
300
, p.
120998
.10.1016/j.fuel.2021.120998
8.
Zhu
,
Z.
,
Zhong
,
X.
,
Zhao
,
X.
,
Wang
,
Y.
,
Zheng
,
Z.
,
Yao
,
M.
, and
Wang
,
H.
,
2021
, “
Numerical Investigation on Combustion System Optimization of Stoichiometric Operation Natural Gas Engine Based on Knocking Boundary Extension
,”
Fuel
,
290
, p.
120092
.10.1016/j.fuel.2020.120092
9.
Zheng
,
J.
,
Wang
,
J.
,
Zhao
,
Z.
,
Wang
,
D.
, and
Huang
,
Z.
,
2019
, “
Effect of Equivalence Ratio on Combustion and Emissions of a Dual-Fuel Natural Gas Engine Ignited With Diesel
,”
Appl. Therm. Eng.
,
146
, pp.
738
751
.10.1016/j.applthermaleng.2018.10.045
10.
Zhang
,
Q.
,
Li
,
M.
,
Li
,
G.
,
Shao
,
S.
, and
Li
,
P.
,
2017
, “
Transient Emission Characteristics of a Heavy-Duty Natural Gas Engine at Stoichiometric Operation With EGR and TWC
,”
Energy
,
132
, pp.
225
237
.10.1016/j.energy.2017.05.039
11.
Qian
,
Y.
,
Gong
,
Z.
,
Zhuang
,
Y.
,
Wang
,
C.
, and
Zhao
,
P.
,
2018
, “
Mechanism Study of Scavenging Process and Its Effect on Combustion Characteristics in a Boosted GDI Engine
,”
Energy
,
165
, pp.
246
266
.10.1016/j.energy.2018.09.077
12.
Yan
,
B.
,
Wang
,
H.
,
Zheng
,
Z.
,
Qin
,
Y.
, and
Yao
,
M.
,
2017
, “
The Effects of LIVC Miller Cycle on the Combustion Characteristics and Thermal Efficiency in a Stoichiometric Operation Natural Gas Engine With EGR
,”
Appl. Therm. Eng.
,
122
, pp.
439
450
.10.1016/j.applthermaleng.2017.04.121
13.
Yin
,
C.
,
Chen
,
Q.
,
Zhang
,
Z.
,
Zhu
,
H.
, and
Shen
,
K.
,
2021
, “
Research of Exhaust Gas Recirculation on Commercial Turbocharged Gasoline Direct Injection Engine With Intense Tumble Flow
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p.
031024
.10.1115/1.4049925
14.
Baratta
,
M.
,
Misul
,
D.
,
Viglione
,
L.
, and
Xu
,
J.
,
2019
, “
Combustion Chamber Design for a High-Performance Natural Gas Engine: CFD Modeling and Experimental Investigation
,”
Energy Convers. Manage.
,
192
, pp.
221
231
.10.1016/j.enconman.2019.04.030
15.
Wang
,
B.
,
Li
,
T.
,
Ge
,
L.
, and
Ogawa
,
H.
,
2016
, “
Optimization of Combustion Chamber Geometry for Natural Gas Engines With Diesel Micro-Pilot-Induced Ignition
,”
Energy Convers. Manage.
,
122
, pp.
552
563
.10.1016/j.enconman.2016.06.027
16.
Liu
,
J. L.
, and
Dumitrescu
,
C.
,
2019
, “
Experimental Investigation of a Natural Gas Lean-Burn Spark Ignition Engine With Bowl-in-Piston Combustion Chamber
,”
SAE
Paper No. 2019-01-0559.10.4271/2019-01-0559
17.
Li
,
F.
,
Liu
,
C.
,
Song
,
H.
, et al.,
2018
, “
Improving Combustion and Emission Characteristics in Heavy-Duty Natural-Gas Engine by Using Pistons Enhancing Turbulence
,”
SAE
Paper No. 2018-01-1685.10.4271/2018-01-1685
18.
Duan
,
X.
,
Zhang
,
S.
,
Liu
,
Y.
,
Li
,
Y.
,
Liu
,
J.
,
Lai
,
M.-C.
, and
Deng
,
B.
,
2020
, “
Numerical Investigation the Effects of the Twin-Spark Plugs Coupled With EGR on the Combustion Process and Emissions Characteristics in a Lean-Burn Natural Gas SI Engine
,”
Energy
,
206
, p.
118181
.10.1016/j.energy.2020.118181
19.
Chen
,
Y.
,
Liu
,
A.
,
Deng
,
B.
,
Xu
,
Z.
,
Feng
,
R.
,
Fu
,
J.
,
Liu
,
X.
,
Zhang
,
G.
, and
Zhou
,
L.
,
2019
, “
The Influences of Ignition Modes on the Performances for a Motorcycle Single Cylinder at Lean-Burn Operation: Looking Inside Interaction Between Flame Front and Turbulence
,”
Energy
,
179
, pp.
528
541
.10.1016/j.energy.2019.05.001
20.
Wohlgemuth
,
S.
,
Roesler
,
S.
, and
Wachtmeister
,
G.
,
2014
, “
Piston Design Optimization for a Two-Cylinder Lean-Burn Natural Gas Engine—3D-CFD-Simulation and Test Bed Measurements
,”
SAE
Paper No. 2014-01-1326.10.4271/2014-01-1326
21.
Yu
,
X.
,
Liu
,
Z.
,
Wang
,
Z.
, and
Dou
,
H.
,
2013
, “
Optimize Combustion of Compressed Natural Gas Engine by Improving In-Cylinder Flows
,”
Int. J. Automot. Technol.
,
14
(
4
), pp.
539
549
.10.1007/s12239-013-0058-3
22.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Combustion Partitioning Inside a Natural Gas Spark Ignition Engine With a Bowl-in-Piston Geometry
,”
Energy Convers. Manage.
,
183
, pp.
73
83
.10.1016/j.enconman.2018.12.118
23.
Saikaly
,
K.
,
Le Corre
,
O.
,
Rahmouni
,
C.
, and
Truffet
,
L.
,
2010
, “
Preventive Knock Protection Technique for Stationary SI Engines Fuelled by Natural Gas
,”
Fuel Process. Technol.
,
91
(
6
), pp.
641
652
.10.1016/j.fuproc.2010.01.011
24.
Yao
,
A.
,
Xu
,
H.
, and
Yao
,
C.
,
2015
, “
Analysis of Pressure Waves in the Cone-Type Combustion Chamber Under SI Engine Knock
,”
Energy Convers. Manage.
,
96
, pp.
146
158
.10.1016/j.enconman.2015.02.057
25.
Park
,
S.
,
2012
, “
Optimization of Combustion Chamber Geometry and Engine Operating Conditions for Compression Ignition Engines Fueled With Dimethyl Ether
,”
Fuel
,
97
, pp.
61
71
.10.1016/j.fuel.2012.03.004
26.
Ravi
,
K.
,
Pradeep Bhasker
,
J.
,
Alexander
,
J.
, and
Porpatham
,
E.
,
2018
, “
CFD Study and Experimental Investigation of Piston Geometry Induced In-Cylinder Charge Motion on LPG Fuelled Lean-Burn Spark Ignition Engine
,”
Fuel
,
213
, pp.
1
11
.10.1016/j.fuel.2017.10.047
27.
Zhang
,
S.
,
Duan
,
X.
,
Liu
,
Y.
,
Guo
,
G.
,
Zeng
,
H.
,
Liu
,
J.
,
Lai
,
M.-C.
,
Talekar
,
A.
, and
Yuan
,
Z.
,
2019
, “
Experimental and Numerical Study the Effect of Combustion Chamber Shapes on Combustion and Emissions Characteristics in a Heavy-Duty Lean-Burn SI Natural Gas Engine Coupled With Detail Combustion Mechanism
,”
Fuel
,
258
, p.
116130
.10.1016/j.fuel.2019.116130
28.
Gómez M Juan
,
P.
, and
Amell
,
A.
,
2019
, “
Effect of the Turbulence Intensity on Knocking Tendency in a SI Engine With High Compression Ratio Using Biogas and Blends With Natural Gas, Propane and Hydrogen
,”
Int. J. Hydrogen Energy
,
44
(
33
), pp.
18532
18544
.10.1016/j.ijhydene.2019.05.146
29.
Richards, K., Senecal, P., and Pomraning, E.,
2018
,
CONVERGE User Guide and Reference Manual (Version 2018)
,
Convergent Science
, Inc., Madison, WI.
30.
Fan
,
B. W.
,
Pan
,
J. F.
,
Pan
,
Z. H.
,
Tang
,
A. K.
,
Zhu
,
Y. J.
, and
Xue
,
H.
,
2015
, “
Effects of Pocket Shape and Ignition Slot Locations on the Combustion Processes of a Rotary Engine Fueled With Natural Gas
,”
Appl. Therm. Eng.
,
89
, pp.
11
27
.10.1016/j.applthermaleng.2015.05.078
31.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG k-ɛ models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.10.1080/00102209508907782
32.
Silva
,
M.
,
Sanal
,
S.
, and
Hlaing
,
P.
, et al.,
2021
, “
A Computational Investigation of Fuel Enrichment in the Pre-Chamber on the Ignition of the Main Chamber Charge
,”
SAE
Technical Paper No. 2021-01-0523.10.4271/2021-01-0523
33.
Duan
,
X.
,
Liu
,
Y.
,
Lai
,
M.-C.
,
Guo
,
G.
,
Liu
,
J.
,
Chen
,
Z.
, and
Deng
,
B.
,
2019
, “
Effects of Natural Gas Composition and Compression Ratio on the Thermodynamic and Combustion Characteristics of a Heavy-Duty Lean-Burn SI Engine Fueled With Liquefied Natural Gas
,”
Fuel
,
254
, p.
115733
.10.1016/j.fuel.2019.115733
34.
Rao
,
A.
,
Liu
,
Y.
, and
Ma
,
F.
,
2022
, “
Study of NOx Emission for Hydrogen Enriched Compressed Natural Along With Exhaust Gas Recirculation in Spark Ignition Engine by Zeldovich' Mechanism, Support Vector Machine and Regression Correlation
,”
Fuel
,
318
, p.
123577
.10.1016/j.fuel.2022.123577
35.
Fenimore
,
C. P.
,
1971
, “
Formation of Nitric Oxide in Premixed Hydrocarbon Flames
,”
Symp. (Int.) Combust.
,
13
(
1
), pp.
373
380
.10.1016/S0082-0784(71)80040-1
36.
Li
,
Y.
,
Wang
,
P.
,
Wang
,
S.
,
Liu
,
J.
,
Xie
,
Y.
, and
Li
,
W.
,
2019
, “
Quantitative Investigation of the Effects of CR, EGR and Spark Timing Strategies on Performance, Combustion and NOx Emissions Characteristics of a Heavy-Duty Natural Gas Engine Fueled With 99% Methane Content
,”
Fuel
,
255
, p.
115803
.10.1016/j.fuel.2019.115803
37.
Li
,
W.
,
Liu
,
Z.
,
Wang
,
Z.
, and
Xu
,
Y.
,
2014
, “
Experimental Investigation of the Thermal and Diluent Effects of EGR Components on Combustion and NOx Emissions of a Turbocharged Natural Gas SI Engine
,”
Energy Convers. Manage.
,
88
, pp.
1041
1050
.10.1016/j.enconman.2014.09.051
You do not currently have access to this content.