Abstract

Current research and development efforts in the field of heavy-duty gas turbines focus on increasing engine efficiencies, lowering combustor emissions, and extending inspection intervals. To achieve further improvements in these development fields, it is crucial for gas turbine manufacturers to continuously build up knowledge on leakage air inside different components of gas turbines. Leakage air can by nature be hardly predicted and is usually only estimated indirectly in real engines. Therefore, investigations on representative test rigs remain a fundamental method for quantifying air leakages more accurately. This article deals with a specific air leakage, which can occur between two firmly pressed rigid surfaces. One challenge for the engineers is to predict the leakage for new surfaces but also used surfaces with fretting corrosion and wear marks as a function of the contact force. In this perspective, air mass flow measurements were performed in a leakage test rig for different contact geometries, pressure ratios, and compression levels between the surfaces. The purpose of the analysis is to determine the potential effect of the roughness, length, curvature, and contact forces of the pressed surfaces on the leakage amount. The presented measurement procedure and results contribute to the extension of the leakage characteristic database for generic gas turbine components.

References

1.
Rathbun
,
F. O.
,
1964
, “
Experimental Leakage Rate Experiments
,”
Proceedings of the Conference on Design of Leak‐Tight Separable Fluid Connectors
, Huntsville, AL, Mar.
24
25
.
2.
Armand
,
G.
,
Lapujoulade
,
J.
, and
Paigne
,
J.
,
1964
, “
A Theoretical and Experimental Relationship Between the Leakage of Gases Through the Interface of Two Metals in Contact and Their Superficial Micro‐Geometry
,”
Vaccuum
,
14
(
2
), pp.
53
57
.10.1016/0042-207X(64)90653-0
3.
Buchter
,
H. H.
,
1973
, “
Fundamental Principles for Static Sealing With Metals in the High Pressure Field
,”
ASLE Trans.
,
16
(
4
), pp.
304
309
.10.1080/05698197308982738
4.
Estrada
,
H.
, and
Parsons
,
I. D.
,
1999
, “
Strength and Leakage Finite Element Analysis of a GFRP Flange Joint
,”
Int. J. Pressure Vessels Piping
,
76
(
8
), pp.
543
550
.10.1016/S0308-0161(99)00021-6
5.
Arghavani
,
J.
,
Derenne
,
M.
, and
Marchand
,
L.
,
2003
, “
Effect of Surface Characteristics on Compressive Stress and Leakage Rate in Gasketed Flanged Joints
,”
Int. J. Adv. Manuf. Technol.
,
21
(
10–11
), pp.
713
732
.10.1007/s00170-001-1120-2
6.
Abid
,
M.
, and
Nash
,
D. H.
,
2004
, “
A Parametric Study of Metal‐to‐Metal Contact Flanges With Optimised Geometry for Safe Stress and No‐Leak Conditions
,”
Int. J. Pressure Vessels Piping
,
81
(
1
), pp.
67
74
.10.1016/j.ijpvp.2003.11.012
7.
Bertini
,
L.
,
Beghini
,
M.
,
Santus
,
C.
, and
Mariotti
,
G.
,
2009
, “
Metal to Metal Flanges Leakage Analysis
,”
ASME
Paper No. PVP2009-77730.10.1115/PVP2009-77730
8.
Roth
,
A.
, and
Inbar
,
A.
,
1968
, “
An Analysis of the Vacuum Sealing Process Between Turned Surfaces
,”
Vaccum
,
18
(
6
), pp.
309
317
.10.1016/0042-207X(68)92088-5
9.
Roth
,
A.
,
1970
, “
The Influence of the Surface Roughness on the Specific Leak Rate of Gasket Seals
,”
Vaccum
,
20
(
10
), pp.
431
435
.10.1016/S0042-207X(70)80056-2
10.
Matsuzaki
,
Y.
, and
Kazamaki
,
T.
,
1988
, “
Effect of Surface Roughness on Compressive Stress of Static Seals
,”
JSME Int. J.
,
31
(
1
), pp.
99
106
.10.1299/jsmec1988.31.99
11.
Nitta
,
I.
, and
Matsuzaki
,
Y.
,
2010
, “
Experimental Study of the Performance of Static Seals Based on Measurements of Real Contact Area Using Thin Polycarbonate Films
,”
ASME J. Tribol.
,
132
(
2
), p.
022202
.10.1115/1.4000838
12.
Murtagian
,
G. R.
,
Fanelli
,
V.
,
Villasante
,
J. A.
,
Johnson
,
D. H.
, and
Ernst
,
H. A.
,
2004
, “
Sealability of Stationary Metal‐to‐Metal Seals
,”
ASME J. Tribol.
,
126
(
3
), pp.
591
596
.10.1115/1.1715103
13.
Marie
,
C.
, and
Lasseux
,
D.
,
2007
, “
Experimental Leak‐Rate Measurement Through a Static Metal Seal
,”
ASME J. Fluids Eng.
,
129
(
6
), pp.
799
805
.10.1115/1.2734250
14.
Cohen
,
H.
,
Rogers
,
G. F. C.
, and
Saravanamuttoo
,
H. I. H.
,
1991
,
Gas Turbine Theory
, Pearson Education, London, UK.
15.
Oertel
, H., ed.,
2012
,
Prandtl – Führer Durch Die Strömungslehre
.10.1007/978-3-8348-2315-1
16.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
17.
Kutz
,
K. J.
, and
Speer
,
T. M.
,
1992
, “
Simulation of the Secondary Air System of Aero Engines
,”
ASME
Paper No. 92-GT-068.10.1115/92-GT-068
18.
Miller
,
R. W.
, and
Kneisel
,
O.
,
1973
, “
A Comparison Between Orifice and Flow Nozzle Laboratory Data and Published Coefficients
,”
ASME
Paper No. 73-WA/FM-5.10.1115/73-WA/FM-5.
19.
Hagen
,
G. H. L.
,
1854
, “
Über den Einfluss der Temperatur auf die Bewegung des Wassers in Röhren
,” Kgl. Akademie der Wiss, Berlin, Germany.https://www.zvab.com/Einfluss-Temperatur-Bewegung-Wassers-R%C3%B6hren-Hagen/986330957/bd
20.
Idelchick
,
I. E.
, and Fried, E.,
1986
,
Handbook of Hydraulic Resistance
, 2nd ed., United States Department of Energy.https://www.osti.gov/biblio/7221713-handbook-hydraulic-resistance-second-edition
21.
Nikuradse
,
J.
,
1933
, “
Strömungsgesetze in Rauhen Rohren
,”
VDI
,
361
, p.
1
.
You do not currently have access to this content.