Abstract

Modal spacing (band gaps) in the frequency spectrum of rotating machines can be imposed by geometric periodicity. By designing the rotor with a geometry that repeats periodically, we can impose to the vibration response of the rotor a modal “gap” considerably large, where no resonances appear. In this work, we consider that the rotating elements of the machine (e.g., the stages or the impellers) are the periodic elements of the rotor. In this disk-like configuration of the rotor, the system can present band gaps due to two different reasons: due to matching between the number of disks and the eigenmode wavenumber (usually in slender rotors); due to the presence of local-mode shapes (usually in large rotors). Analytical modeling of the system is presented, whose approximated solution can be used to predict the start and stop frequencies of the band gaps. The limitations in band gap formation are also shown when the rotor is not perfectly periodic (quasi-periodic geometry). In this case, disk positioning plays an important role in the band gap formation.

References

1.
API,
2014
, Axial and Centrifugal Compressors and Expander-Compressors,
American Petroleum Institute
,
Washington, DC
, Standard No.
API 617
.https://www.api.org/~/media/files/publications/whats%20new/617_e8%20pa.pdf
2.
ISO,
2016
, Mechanical Vibration—Measurement and Evaluation of Machine Vibration,
International Organization for Standardization
,
Geneva
, Switzerland, Standard No.
ISO 20816-1:2016
.https://www.iso.org/standard/63180.html
3.
Junyi
,
L.
,
Ruffini
,
V.
, and
Balint
,
D.
,
2016
, “
Measuring the Band Structures of Periodic Beams Using the Wave Superposition Method
,”
J. Sound Vib.
,
382
, pp.
158
178
.10.1016/j.jsv.2016.07.005
4.
Bachour
,
R. S.
, and
Nicoletti
,
R.
,
2021
, “
Natural Frequencies and Band Gaps of Periodically Corrugated Beams
,”
ASSME J. Vib. Acoust.
,
143
(
4
), p.
044502
.10.1115/1.4048889
5.
Deymier
,
P. A.
, ed.,
2013
,
Acoustic Metamaterials and Phononic Crystals
,
Springer Verlag
,
Berlin, Germany
.
6.
Richards
,
D.
, and
Pines
,
D. J.
,
2003
, “
Passive Reduction of Gear Mesh Vibration Using a Periodic Drive Shaft
,”
J. Sound Vib.
,
264
(
2
), pp.
317
342
.10.1016/S0022-460X(02)01213-0
7.
Alsaffar
,
Y.
,
Sassi
,
S.
, and
Baz
,
A.
,
2018
, “
Band Gap Characteristics of Periodic Gyroscopic Systems
,”
J. Sound Vib.
,
435
, pp.
301
322
.10.1016/j.jsv.2018.07.015
8.
Yu
,
D.
,
Liu
,
Y.
,
Wang
,
G.
,
Cai
,
L.
, and
Qiu
,
J.
,
2006
, “
Low Frequency Torsional Vibration Gaps in the Shaft With Locally Resonant Structures
,”
Phys. Lett. A
,
348
(
3–6
), pp.
410
415
.10.1016/j.physleta.2005.08.067
9.
Song
,
Y.
,
Wen
,
J.
,
Yu
,
D.
, and
Wen
,
X.
,
2013
, “
Analysis and Enhancement of Torsional Vibration Stopbands in a Periodic Shaft System
,”
J. Phys. D Appl. Phys.
,
46
(
14
), p.
145306
.10.1088/0022-3727/46/14/145306
10.
Li
,
L.
,
Chen
,
T.
,
Wu
,
J.
,
Wang
,
X.
, and
Wang
,
Z.
,
2012
, “
Hybrid Method for Analyzing the Torsional Vibration of One-Dimensional Phononic-Band-Gap Shafts
,”
Jpn. J. Appl. Phys
,
51
(
5
), p.
052001
.10.1143/JJAP.51.052001
11.
Li
,
L.
, and
Cai
,
A.
,
2016
, “
Low-Frequency Band Gap Mechanism of Torsional Vibration of Lightweight Elastic Metamaterial Shafts
,”
Eur. Phys. J. Appl. Phys.
,
75
(
1
), p.
10501
.10.1051/epjap/2016160169
12.
Li
,
L.
,
Lv
,
R.
,
Cai
,
A.
,
Xie
,
M.
,
Chen
,
Y.
, and
Huang
,
G.
,
2019
, “
Low-Frequency Vibration Suppression of a Multi-Layered Elastic Metamaterial Shaft With Discretized Scatters
,”
J. Phys. D Appl. Phys.
,
52
(
5
), p.
055105
.10.1088/1361-6463/aaefe6
13.
Fan
,
L.
,
He
,
Y.
,
Chen
,
X.
, and
Zhao
,
X.
,
2020
, “
Elastic Metamaterial Shaft With a Stack-Like Resonator for Low-Frequency Vibration Isolation
,”
J. Phys. D Appl. Phys.
,
53
(
10
), p.
105101
.10.1088/1361-6463/ab5d59
14.
Prado
,
L. S.
, and
Ritto
,
T. G.
,
2020
, “
Vibration Reduction of a Rotating Machine Using Resonator Rings
,”
Mech. Res. Commun.
,
107
, p.
103533
.10.1016/j.mechrescom.2020.103533
15.
Sinha
,
A.
,
2015
, “
Optimal Damped Vibration Absorber: Including Multiple Modes and Excitation Due to Rotating Unbalance
,”
ASME J. Vib. Acoust.
,
137
(
6
), p.
064501
.10.1115/1.4030714
16.
Sugino
,
C.
,
Leadenham
,
S.
,
Ruzzene
,
M.
, and
Erturk
,
A.
,
2016
, “
On the Mechanics of Bandgap Formation in Locally Resonant Finite Elastic Metamaterials
,”
J. Appl. Phys.
,
120
(
13
), p.
134501
.10.1063/1.4963648
17.
Nelson
,
H. D.
, and
McVaugh
,
J. M.
,
1976
, “
The Dynamics of Rotor-Bearing Systems Using Finite Elements
,”
J. Eng. Ind.
,
98
(
2
), pp.
593
600
.10.1115/1.3438942
18.
Bottega
,
W. J.
,
2006
,
Engineering Vibrations
,
CRC Press
,
Boca Raton, FL
.
19.
Gürgöze
,
M.
,
1984
, “
A Note on the Vibrations of Restrained Beams and Rods With Point Masses
,”
J. Sound Vib.
,
96
(
4
), pp.
461
468
.10.1016/0022-460X(84)90633-3
20.
Wu
,
J. S.
, and
Lin
,
T. L.
,
1990
, “
Free Vibration Analysis of a Uniform Cantilever Beam With Point Masses by an Analytical-and-Numerical-Combined Method
,”
J. Sound Vib.
,
136
(
2
), pp.
201
213
.10.1016/0022-460X(90)90851-P
21.
Hughes-Hallett
,
D.
,
McCullum
,
W. G.
,
Gleason
,
A. M.
,
Osgood
,
B. G.
,
Flath
,
D. E.
,
Quinney
,
D.
,
Lock
,
P. F.
,
Rhea
,
K.
,
Lomen
,
D. O.
,
Tekosky-Feldman
,
J.
,
Lovelock
,
D.
, and
Tucker
,
T. W.
,
2005
,
Calculus
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.