Abstract

Optimization algorithms in the compressor detailed design stage generate big data of geometries and corresponding performances, but these data are often not exploited efficiently to unveil hidden compressor design guidance. In this work, the Shapley additive explanations (SHAP) method from game theory is proposed as an efficient methodology to extract design guidelines from databases. A database was generated when optimizing the blade features (sweep, lean, and end-bend) of Rotor 37. Based on this, a neural network is trained to predict compressor efficiency. The SHAP method is then applied to explain the neural network behavior, which provides information on the sensitivity of single geometrical variables and the coupling effect between multiple geometrical variables. Results show that the near-tip sweep and midspan lean angles are most influential on efficiency. Within the same group of variables, the adjacent variables tend to present strong positive coupling effects on efficiency. Among different groups, evident coupling effects are observed between sweep and lean and between lean and end-bend, but the coupling effect between sweep and end-bend is negligible. Flow mechanisms behind the coupling effects are discussed. For near-tip lean angles L3 and L4, the positive coupling effect is due to the change of the passage shock. For near-tip lean angle L4 and sweep angle S4, the change of detached shock leads to a negative coupling effect. The proposed data mining method based on the neural network and SHAP is promising and transferable to other turbomachinery optimization databases in the future.

References

1.
Li
,
Z.
, and
Zheng
,
X.
,
2017
, “
Review of Design Optimization Methods for Turbomachinery Aerodynamics
,”
Prog. Aerosp. Sci.
,
93
, pp.
1
23
.10.1016/j.paerosci.2017.05.003
2.
Li
,
H.
,
Song
,
L.
,
Li
,
Y.
, and
Feng
,
Z.
,
2011
, “
2D Viscous Aerodynamic Shape Design Optimization for Turbine Blades Based on Adjoint Method
,”
ASME J. Turbomach.
,
133
(
3
), p.
031014
.10.1115/1.4001234
3.
Poloni
,
C.
,
Giurgevich
,
A.
,
Onesti
,
L.
, and
Pediroda
,
V.
,
2000
, “
Hybridization of a Multi-Objective Genetic Algorithm, a Neural Network and a Classical Optimizer for a Complex Design Problem in Fluid Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
186
(
2–4
), pp.
403
420
.10.1016/S0045-7825(99)00394-1
4.
Benini
,
E.
,
2004
, “
Three-Dimensional Multi-Objective Design Optimization of a Transonic Compressor Rotor
,”
J. Propuls. Power
,
20
(
3
), pp.
559
565
.10.2514/1.2703
5.
Girden
,
E. R.
,
1992
,
ANOVA: Repeated Measures
,
Sage
,
Thousand Oaks, CA
.
6.
Oyama
,
A.
,
Taku
,
N.
, and
Kozo
,
F.
,
2010
, “
Data Mining of Pareto-Optimal Transonic Airfoil Shapes Using Proper Orthogonal Decomposition
,”
J. Aircr.
,
47
(
5
), pp.
1756
1762
.10.2514/1.C000264
7.
Iuliano
,
E.
, and
Quagliarella
,
D.
,
2013
, “
Proper Orthogonal Decomposition, Surrogate Modelling and Evolutionary Optimization in Aerodynamic Design
,”
Comput. Fluids
,
84
, pp.
327
350
.10.1016/j.compfluid.2013.06.007
8.
Shinkyu
,
J.
,
Kazuhisa
,
C.
, and
Shigeru
,
O.
,
2005
, “
Data Mining for Aerodynamic Design Space
,”
J. Aerosp. Comput. Inf. Comm.
,
2
(
11
), pp.
452
469
.10.2514/1.17308
9.
Guo
,
Z.
,
Song
,
L.
,
Zhou
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2015
, “
Multi-Objective Aerodynamic Optimization Design and Data Mining of a High Pressure Ratio Centrifugal Impeller
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
092602
.10.1115/1.4029882
10.
Chiba
,
K.
, and
Shigeru
,
O.
,
2007
, “
Data Mining for Multidisciplinary Design Space of Regional-Jet Wing
,”
J. Aerosp. Comput. Inf. Comm.
,
4
(
11
), pp.
1019
1036
.10.2514/1.19404
11.
Li
,
X.
,
Zhao
,
Y.
, and
Liu
,
Z.
,
2019
, “
A Novel Global Optimization Algorithm and Data-Mining Methods for Turbomachinery Design
,”
Struct. Multidiscipl. Optim.
,
60
(
2
), pp.
581
612
.10.1007/s00158-019-02227-5
12.
Song
,
L.
,
Guo
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2016
, “
Research on Metamodel-Based Global Design Optimization and Data Mining Methods
,”
ASME J. Eng. Gas Turbines Power
,
138
(
9
), p.
092604
.10.1115/1.4032653
13.
Lundberg
,
S. M.
, and
Lee
,
S. I.
,
2017
, “
A Unified Approach to Interpreting Model Predictions
,”
Proc. Adv. Neural Inf. Process. Syst.
, 30, pp.
4768
4777
.https://arxiv.org/abs/1705.07874
14.
Lundberg
,
S. M.
,
Erion
,
G.
,
Chen
,
H.
,
DeGrave
,
A.
,
Prutkin
,
J. M.
,
Nair
,
B.
,
Katz
,
R.
,
Himmelfarb
,
J.
,
Bansal
,
N.
, and
Lee
,
S. I.
,
2020
, “
From Local Explanations to Global Understanding With Explainable AI for Trees
,”
Nat. Mach. Intell.
,
2
(
1
), pp.
56
67
.10.1038/s42256-019-0138-9
15.
Lundberg
,
S. M.
,
Nair
,
B.
,
Vavilala
,
M. S.
,
Horibe
,
M.
,
Eisses
,
M. J.
,
Adams
,
T.
,
Liston
,
D. E.
,
Low
,
D. K. W.
,
Newman
,
S. F.
,
Kim
,
J.
, and
Lee
,
S. I.
,
2018
, “
Explainable Machine-Learning Predictions for the Prevention of Hypoxaemia During Surgery
,”
Nat. Biomed. Eng.
,
2
(
10
), pp.
749
760
.10.1038/s41551-018-0304-0
16.
Jia
,
X.
,
Lynch
,
A.
,
Huang
,
Y.
,
Danielson
,
M.
,
Lang'at
,
I.
,
Milder
,
A.
,
Ruby
,
A. E.
,
Wang
,
H.
,
Friedler
,
S. A.
,
Norquist
,
A. J.
, and
Schrier
,
J.
,
2019
, “
Anthropogenic Biases in Chemical Reaction Data Hinder Exploratory Inorganic Synthesis
,”
Nature
,
573
(
7773
), pp.
251
255
.10.1038/s41586-019-1540-5
17.
Parsa
,
A. B.
,
Movahedi
,
A.
,
Taghipour
,
H.
,
Derrible
,
S.
, and
Mohammadian
,
A. K.
,
2020
, “
Toward Safer Highways, Application of XGBoost and SHAP for Real-Time Accident Detection and Feature Analysis
,”
Accid. Anal. Prev.
,
136
, p.
105405
.10.1016/j.aap.2019.105405
18.
Whitley
,
D.
,
1994
, “
A Genetic Algorithm Tutorial
,”
Stat. Comput.
,
4
(
2
), pp.
65
85
.10.1007/BF00175354
19.
Stein
,
M.
,
1987
, “
Large Sample Properties of Simulations Using Latin Hypercube Sampling
,”
Technometrics
,
29
(
2
), pp.
143
151
.10.1080/00401706.1987.10488205
20.
Gent
,
C. R.
, and
Sheppard
,
C. P.
,
1992
, “
Predicting Time Series by a Fully Connected Neural Network Trained by Back Propagation
,”
Comput. Control Eng.
,
3
(
3
), pp.
109
112
.10.1049/cce:19920031
21.
Reid
,
L.
, and
Moore
,
R. D.
,
1978
, “Design and Overall Performance of Four Highly-Loaded, High Speed Inlet Stages for an Advanced High-Pressure Ratio Core Compressor,” NASA, Cleveland, OH, Report No. NASA TP-1337.
22.
Moore
,
R. D.
, and
Reid
,
L.
,
1980
, “Performance of Single-Stage Axial Flow Transonic Compressor with Rotor and Stator Aspect-Ratios of 1.19 and 1.26, Respectively, and with a Design Pressure Ratio of 2.05,” NASA, Cleveland, OH, Report No. NASA TP-1659.
23.
Roache
,
P. J.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa
,
Albuquerque, NM
.
24.
Turner
,
M. G.
, and
Bruna
,
D.
,
2013
, “
Isothermal Boundary Condition at Casing Applied to the Rotor 37 Transonic Axial Flow Compressor
,”
ASME J. Turbomach.
,
135
(
3
), p.
034501
.10.1115/1.4007569
25.
Suder
,
K. L.
,
1998
, “
Blockage Development in a Transonic, Axial Compressor Rotor
,”
ASME J. Turbomach.
,
120
(
3
), pp.
465
476
.10.1115/1.2841741
26.
Ameri
,
A.
,
2010
, “NASA Rotor 37 CFD Code Validation Glenn-HT Code,” NASA, Columbus, OH, Report No. NASA CR-2010-216235.
27.
Suder
,
K. L.
,
2021
, “
NASA's Role in Gas Turbine Technology Development: Accelerating Technical Progress Via Collaboration Between Academia, Industry, and Government Agencies
,”
ASME J. Turbomach.
,
143
(
1
), p.
011006
.10.1115/1.4048696
28.
Spalart
,
P.
, and
Allmaras
,
S.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aérosp.
,
1
, pp.
5
21
.10.2514/6.1992-439
29.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
650
.10.1115/1.2929299
You do not currently have access to this content.