Abstract

In the modern multishaft gas turbine engines, orifice is an important throttling element, and the discharge coefficient of rotating orifices may vary considerably depending on the operating conditions, the geometry, and surrounding environment. The influences of the rotating number and the pressure ratio on the rotating orifices' flow characteristics are investigated in this study. Besides, the effects of confined space, wall inclination angle (α), and the angle between the axis of orifice and the disk wall normal (β) are also analyzed statistically. It is found that the rotating number has a significant effect on the discharge coefficient. As the rotating number increases from 0 to 0.6, the discharge coefficient reduces by about 47.88%. When rotating number is 0.74 and pressure ratio is 1.10, the discharge coefficient can be improved by 16.88% with α changes from 90 deg to 180 deg. The parameter, β, affects discharge coefficient slightly in rotating condition. However, the maximum discharge coefficient is achieved with β = 0 deg in the static condition. The results also show that a confined space weakens the effect of rotation and changes the air flow direction in the inlet chamber, which also has a positive impact on the discharge coefficient. In the current research, it is found that there is a significant difference between the traditional empirical formulas used in the literature and the fitting result. By modifying the incidence angle and taking account of the influence of the angle of inclination, the maximum error was reduced from 56.79% to 3.16%.

References

1.
Owen
,
J. M.
,
2007
, “
Modelling Internal Air Systems in Gas Turbine Engines
,”
J. Aerosp. Power
,
22
(
4
), pp.
505
520
.https://www.researchgate.net/publication/279998780_Modelling_internal_air_systems_in_gas_turbine_engines
2.
Johnson
,
B. V.
,
2010
,
Internal Air and Lubrication Systems
,
Wiley
Ltd, Baffins Lane, Chichester, West Sussex, UK.
3.
Hay
,
N.
, and
Lampard
,
D.
,
1998
, “
Discharge Coefficient of Turbine Cooling Holes: A Review
,”
ASME J. Turbomach.
,
120
(
2
), pp.
314
319
.10.1115/1.2841408
4.
Mcgreehan
,
W. F.
, and
Schotsch
,
M. J.
,
1988
, “
Flow Characteristics of Long Orifices With Rotation and Corner Radiusing
,”
ASME J. Turbomach.
,
110
(
2
), pp.
213
217
.10.1115/1.3262183
5.
Lichtarowicz
,
A.
,
Duggins
,
R. K.
, and
Markland
,
E.
,
1965
, “
Discharge Coefficients for Incompressible Non-Cavitating Flow Through Long Orifices
,”
J. Mech. Eng. Sci.
,
7
(
2
), pp.
210
219
.10.1243/JMES_JOUR_1965_007_029_02
6.
Hay
,
N.
,
Khaldi
,
A.
, and
Lampard
,
D.
,
1994
, “
The Coefficient of Discharge of 30° Inclined Film Cooling Holes With Rounded Entries or Exits
,”
ASME
Paper No. 94-GT-180.10.1115/94-GT-180
7.
Hay
,
N.
,
Lampard
,
D.
, and
Benmansour
,
S.
,
1983
, “
Effect of Crossflows on the Discharge Coefficient of Film Cooling Holes
,”
ASME J. Eng. Gas Turbines Power
,
105
(
2
), pp.
243
248
.10.1115/1.3227408
8.
Hay
,
N.
, and
Spencer
,
A.
,
1992
, “
Discharge Coefficients of Cooling Holes With Radiused and Chamfered Inlets
,”
ASME J. Turbomach.
,
114
(
4
), pp.
701
706
.10.1115/1.2928022
9.
Idelchik
,
I. E.
,
1998
, “
Handbook of Hydraulic Resistance (3rd Edition)
,”
J. Fluid Mech.
,
354
, pp.
376
378
.https://www.academia.edu/34052675/HANDBOOK_OF_HYDRAULIC_RESISTANCE_3rd_Edition
10.
Meyfarth
,
P. F.
, and
Shine
,
A. J.
,
1965
, “
Experimental Study of Flow Through Moving Orifices
,”
ASME J. Basic Eng.
,
87
(
4
), pp.
1082
1083
.10.1115/1.3650814
11.
Carlen
,
C. D.
,
1965
, “
An Experimental Investigation of Fluid Flow Through Square Edged Orifices Located in a Rotating Disk
,” M.Sc. thesis,
Air Force Institute of Technology
, Wright-Patterson AFB, Dayton,
OH
.
12.
Wittig
,
S.
,
Kim
,
S.
,
Jakoby
,
R.
, and
Weißert
,
I.
,
1996
, “
Experimental and Numerical Study of Orifice Discharge Coefficients in High-Speed Rotating Disks
,”
ASME J. Turbomach.
,
118
(
2
), pp.
400
407
.10.1115/1.2836655
13.
Indris
,
A.
,
Pullen
,
K.
, and
Barnes
,
D.
,
2004
, “
An Investigation Into the Flow Within Inclined Rotating Orifices and the Influence of Incidence Angle on the Discharge Coefficient
,”
Proc. Inst. Mech. Eng., Part A
,
218
(
1
), pp.
55
68
.10.1243/095765004322847107
14.
Maeng
,
D. J.
,
Lee
,
J. S.
,
Jakoby
,
R.
,
Kim
,
S.
, and
Wittig
,
S.
,
1999
, “
Characteristics of Discharge Coefficient in a Rotating Disk System
,”
ASME J. Eng. Gas Turbines Power
,
121
(
4
), pp.
663
669
.10.1115/1.2818523
15.
Zimmermann
,
H.
,
Kutz
,
J.
, and
Fischer
,
R.
,
1998
, “
Air System Correlations: Part 2—Rotating Holes and Two Phase Flow
,”
ASME
Paper No. 98-GT-207.10.1115/98-GT-207
16.
Dittmann
,
M.
,
Dullenkopf
,
K.
, and
Wittig
,
S.
,
2004
, “
Discharge Coefficients of Rotating Short Orifices With Radiused and Chamfered Inlets
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
803
1009
.10.1115/1.1771685
17.
Sousek
,
J.
,
Pfitzner
,
M.
, and
Niehuis
,
R.
,
2010
, “
Experimental Study of Discharge Coefficients for Radial Orifices in High-Speed Rotating Shafts
,”
ASME
Paper No. GT2010-22691.10.1115/GT2010-22691
18.
Alexiou
,
A.
,
Hills
,
N. J.
,
Long
,
C. A.
,
Turner
,
A. B.
,
Wong
,
L.-S.
, and
Millward
,
J. A.
,
2000
, “
Discharge Coefficients for Flow Through Holes Normal to a Rotating Shaft
,”
Int. J. Heat Fluid Flow
,
21
(
6
), pp.
701
709
.10.1016/S0142-727X(00)00068-0
19.
Wei
,
S.
,
Mao
,
J.
,
Yan
,
J.
,
Han
,
X.
,
Tu
,
Z.
, and
Tian
,
R.
,
2020
, “
Experimental Study on a Hybrid Vortex Reducer System in Reducing the Pressure Drop in a Rotating Cavity With Radial Inflow
,”
Exp. Therm. Fluid Sci.
,
110
, p.
109942
.10.1016/j.expthermflusci.2019.109942
20.
Zhang
,
X. Z.
, and
Hassan
,
I.
,
2012
, “
Rotational Effects on Film Cooling Performance: Simulation of a Louver Cooling Scheme on a Rotating Turbine Blade
,”
Int. J. Numer. Methods Heat Fluid Flow
,
22
(
5
), pp.
622
640
.10.1108/09615531211231271
21.
Fluent Inc.,
2011
, “
Fluent User's Guide
,” ANSYS, Canonsburg, PA.
22.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng
.,
130
(
7
), p.
078001
. 10.1115/1.2960953
23.
Wan
,
C.
,
Rao
,
Y.
, and
Chen
,
P.
,
2015
, “
Numerical Predictions of Jet Impingement Heat Transfer on Square Pin-Fin Roughened Plates
,”
Appl. Therm. Eng.
,
80
, pp.
301
309
.10.1016/j.applthermaleng.2015.01.053
24.
Firouzian
,
M.
,
Owen
,
J. M.
,
Pincombe
,
J. R.
, and
Rogers
,
R. H.
,
1986
, “
Flow and Heat Transfer in a Rotating Cylindrical Cavity With a Radial Inflow of Fluid: Part 2: Velocity, Pressure and Heat Transfer Measurements
,”
Int. J. Heat Fluid Flow
,
7
(
1
), pp.
21
27
.10.1016/0142-727X(86)90037-8
25.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (New York, N.Y.: 1919)
,
75
(
1
), pp.
3
8
.https://www.docin.com/p-1299880150.html
26.
Metger
,
G. W.
,
Richards
,
H. T.
, and
Rohde
,
J. E.
,
1969
, “
Discharge Coefficient for Thick Plate Orifices With Approach Flow Perpendicular and Inclined to the Orifices Axis
,” Lewis Research Center, Cleveland, OH, Report No.
NASA TND-5467
.https://ntrs.nasa.gov/api/citations/19690028630/downloads/19690028630.pdf
27.
Idris
,
A.
,
Pullen
,
K. R.
, and
Read
,
R.
,
2004
, “
The Influence of Incidence Angle on the Discharge Coefficient for Rotating Radial Orifices
,”
ASME
Paper No. GT2004-53237.10.1115/GT2004-53237
28.
Miller
,
R. W.
,
1983
,
Flow Measurement Engineering Handbook
,
McGraw-Hill
, Moore, Barret and Redwood, UK.
29.
Huning
,
M.
,
2010
, “
Comparison of Discharge Coefficient Measurements and Correlations for Orifices With Cross-Flow and Rotation
,”
ASME J. Turbomach.
,
132
(
3
), p.
031017
.10.1115/1.3147102
30.
Zhu
,
P. F.
,
Liu
,
Z. X.
, and
Lv
,
Y. G.
,
2015
, “
Computational Model of Rotating Orifice Considering Incidence Angle
,”
J. Propul. Technol.
,
36
(
8
), pp.
1215
1221
.10.13675/j.cnki.tjjs.2015.08.014
You do not currently have access to this content.