Abstract

Recent investigations of combustion instabilities in annular systems indicate that considerable insights may be gained by using information gathered in single-sector experiments. Such experiments are, for example, employed to measure flame describing functions (FDFs), which represent the flame response to incident perturbations. These data may be used in combination with low-order models to interpret instabilities in multiple injector annular systems. It is known, however, that the structure and dynamical behavior of an isolated flame do not necessarily coincide with those of a flame placed in an annular environment with neighboring side flames. It is then worth analyzing effects that may be induced by the difference in lateral boundary conditions and specifically examining the extent to which the FDF data from single-sector experiments portrays the dynamical response of the flame in the annular environment. These issues are investigated with a new setup named TICCA-Spray, which comprises a linear arrangement of three injectors. The central flame is surrounded by two identical side flames in a rectangular geometry with key dimensions, sidewall separation, and spacing between injectors identical to those of the annular system MICCA-Spray. The describing function of the central flame is determined with techniques recently developed in single-sector experiments (SICCA-Spray). The FDFs obtained in the two configurations are compared for two swirler types having different swirl numbers and pressure drops. The effect of the swirl direction of the neighboring injectors is also explored by operating with co- and counter-swirl combinations. Differences between FDFs determined in the two test facilities, sometimes modest and in other cases less negligible, are found to depend on the flames' spatial extension and interactions. The general inference is that the FDFs measured in a single-injector combustor are better suited if the flame-wall interaction is weak, and provided that the area is equivalent to that of a single sector of an annular combustor. Nonetheless, using a multi-injector system would be more appropriate for a more precise FDF determination.

References

1.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
2.
Kunze
,
K.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2004
, “
Transfer Function Measurements on a Swirl Stabilized Premix Burner in an Annular Combustion Chamber
,”
ASME
Paper No. GT2004-53106.10.1115/GT2004-53106
3.
Krebs
,
W.
,
Flohr
,
P.
,
Prade
,
B.
, and
Hoffmann
,
S.
,
2002
, “
Thermoacoustic Stability Chart for High-Intensity Gas Turbine Combustion Systems
,”
Combust. Sci. Technol.
,
174
(
7
), pp.
99
128
.10.1080/00102200208984089
4.
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
,
Boudier
,
G.
, and
Poinsot
,
T.
,
2009
, “
Large Eddy Simulation of Self Excited Azimuthal Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2909
2916
.10.1016/j.proci.2008.05.033
5.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Moeck
,
J.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “
Self-Sustained Instabilities in an Annular Combustor Coupled by Azimuthal Acoustic Modes
,”
ASME
Paper No. GT2013-95010.10.1115/GT2013-95010
6.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Modal Dynamics of Self-Excited Azimuthal Instabilities in an Annular Combustion Chamber
,”
Combust. Flame
,
160
(
11
), pp.
2476
2489
.10.1016/j.combustflame.2013.04.031
7.
Dawson
,
J. R.
, and
Worth
,
N. A.
,
2014
, “
Flame Dynamics and Unsteady Heat Release Rate of Self-Excited Azimuthal Modes in an Annular Combustor
,”
Combust. Flame
,
161
(
10
), pp.
2565
2578
.10.1016/j.combustflame.2014.03.021
8.
O'Connor
,
J.
,
Acharya
,
V.
, and
Lieuwen
,
T.
,
2015
, “
Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Processes
,”
Prog. Energy Combust. Sci.
,
49
, pp.
1
39
.10.1016/j.pecs.2015.01.001
9.
Prieur
,
K.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2017
, “
A Hysteresis Phenomenon Leading to Spinning or Standing Azimuthal Instabilities in an Annular Combustor
,”
Combust. Flame
,
175
, pp.
283
291
.10.1016/j.combustflame.2016.05.021
10.
Prieur
,
K.
,
Durox
,
D.
,
Schuller
,
S.
, and
Candel
,
S.
,
2018
, “
Strong Azimuthal Combustion Instabilities in a Spray Annular Chamber With Intermittent Partial Blow-Off
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
031503
.10.1115/1.4037824
11.
Wolf
,
P.
,
Staffelbach
,
G.
,
Gicquel
,
L.
,
Müller
,
J.-D.
, and
Poinsot
,
T.
,
2012
, “
Acoustic and Large Eddy Simulation Studies of Azimuthal Modes in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
11
), pp.
3398
3413
.10.1016/j.combustflame.2012.06.016
12.
Laera
,
D.
,
Schuller
,
T.
,
Prieur
,
K.
,
Durox
,
D.
,
Camporeale
,
S. M.
, and
Candel
,
S.
,
2017
, “
Flame Describing Function Analysis of Spinning and Standing Modes in an Annular Combustor and Comparison With Experiments
,”
Combust. Flame
,
184
, pp.
136
152
.10.1016/j.combustflame.2017.05.021
13.
Schuller
,
T.
,
Poinsot
,
T.
, and
Candel
,
S.
,
2020
, “
Dynamics and Control of Premixed Combustion Systems Based on Flame Transfer and Describing Functions
,”
J. Fluid Mech.
,
894
.10.1017/jfm.2020.239
14.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2008
, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Describing Function
,”
J. Fluid Mech.
,
615
, pp.
139
167
.10.1017/S0022112008003613
15.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2019
, “
Characterisation of Flame Surface Annihilation Events in Self Excited Interacting Flames
,”
Combust. Flame
,
199
, pp.
338
351
.10.1016/j.combustflame.2018.10.032
16.
Durox
,
D.
,
Prieur
,
K.
,
Schuller
,
T.
, and
Candel
,
S.
,
2016
, “
Different Flame Patterns Linked With Swirling Injector Interactions in an Annular Combustor
,”
ASME J. Eng. Gas Turbines Power
,
138
(
10
), p.
101504
.10.1115/1.4033330
17.
Dolan
,
B.
,
Gomez
,
R. V.
, and
Gutmark
,
E.
,
2017
, “
Parametric Study of Alternating Flow Patterns in Non-Reacting Multiple-Swirl Flows
,”
AIAA
Paper No. 2017-1956.10.2514/6.2017-1956
18.
Kao
,
Y.-H.
,
Tambe
,
S.
, and
Jeng
,
S.-M.
,
2014
, “
Aerodynamics Study of a Linearly-Arranged 5-Swirler Array
,”
ASME
Paper No. GT2014-25094.10.1115/GT2014-25094
19.
Kao
,
Y.-H.
,
Denton
,
M.
,
Wang
,
X.
,
Jeng
,
S.-M.
, and
Lai
,
M.-C.
,
2015
, “
Experimental Spray Structure and Combustion of a Linearly Arranged 5-Swirler Array
,”
ASME
Paper No. GT2015-42509.10.1115/GT2015-42509
20.
Dolan
,
B.
,
Gomez
,
R. V.
, and
Gutmark
,
E.
,
2015
, “
Optical Measurements of Interacting Lean Direct Injection Fuel Nozzles With Varying Spacing
,”
ASME
Papr No. GT2015-43706.10.1115/GT2015-43706
21.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2012
, “
Cinematographic OH-PLIF Measurements of Two Interacting Turbulent Premixed Flames With and Without Acoustic Forcing
,”
Combust. Flame
,
159
(
3
), pp.
1109
1126
.10.1016/j.combustflame.2011.09.006
22.
Lee
,
T.
,
Lee
,
J.
,
Park
,
J.
,
Han
,
D.
, and
Kim
,
K. T.
,
2018
, “
Staggered Swirler Arrangement in Two Self-Excited Interacting Swirl Flames
,”
Combust. Flame
,
198
, pp.
363
375
.10.1016/j.combustflame.2018.10.001
23.
Lee
,
T.
,
Park
,
J.
,
Han
,
D.
, and
Kim
,
K.
,
2019
, “
The Dynamics of Multiple Interacting Swirl-Stabilized Flames in a Lean-Premixed Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5137
5145
.10.1016/j.proci.2018.05.110
24.
Ciardiello
,
R.
,
Pathania
,
R. S.
,
El Helou
,
I.
, and
Mastorakos
,
E.
,
2022
, “
Lean Blow-Off Investigation in a Linear Multi-Burner Combustor Operated in Premixed and Non-Premixed Modes
,”
Appl. Energy Combust. Sci.
,
9
, p.
100041
.10.1016/j.jaecs.2021.100041
25.
Fanaca
,
D.
,
Alemela
,
P. R.
,
Ettner
,
F.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
, and
Schuermans
,
B.
,
2008
, “
Determination and Comparison of the Dynamic Characteristic of a Perfectly Premixed Flame in Both Single and Annular Combustion Chambers
,”
ASME
Paper No. GT2008-50781.10.1115/GT2008-50781
26.
Fanaca
,
D.
,
Alemela
,
P. R.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2010
, “
Comparison of the Flow Field of a Swirl Stabilized Premixed Burner in a Annular and a Single Burner Combustion Chamber
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
071502
.10.1115/1.4000120
27.
Smith
,
T.
,
Chterev
,
I.
,
Emerson
,
B.
,
Noble
,
D.
, and
Lieuwen
,
T.
,
2018
, “
Comparison of Single- and Multinozzle Reacting Swirl Flow Dynamics
,”
J. Propul. Power
,
34
(
2
), pp.
384
394
.10.2514/1.B36623
28.
Rajendram Soundararajan
,
P.
,
Vignat
,
G.
,
Durox
,
D.
,
Renaud
,
A.
, and
Candel
,
S.
,
2021
, “
Effect of Different Fuels on Combustion Instabilities in an Annular Combustor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p.
031007
.10.1115/1.4049702
29.
Vignat
,
G.
,
Durox
,
D.
,
Renaud
,
A.
, and
Candel
,
S.
,
2020
, “
High Amplitude Combustion Instabilities in an Annular Combustor Inducing Pressure Field Deformation and Flame Blow Off
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011016
.10.1115/1.4045515
30.
Rajendram Soundararajan
,
P.
,
Durox
,
D.
,
Renaud
,
A.
,
Vignat
,
G.
, and
Candel
,
S.
,
2022
, “
Swirler Effects on Combustion Instabilities Analyzed With Measured FDFs, Injector Impedances, and Damping Rates
,”
Combust. Flame
,
238
(
4
), p.
111947
.10.1016/j.combustflame.2021.111947
31.
Hurle
,
I. R.
,
Price
,
R. B.
,
Sugden
,
T. M.
, and
Thomas
,
A.
,
1968
, “
Sound Emission From Open Turbulent Premixed Flames
,”
Proc. R. Soc. London Ser. A Math. Phys. Sci.
,
303
(
1475
), pp.
409
427
.10.1098/rspa.1968.0058
32.
Ballester
,
J.
, and
García-Armingol
,
T.
,
2010
, “
Diagnostic Techniques for the Monitoring and Control of Practical Flames
,”
Prog. Energy Combust. Sci.
,
36
(
4
), pp.
375
411
.10.1016/j.pecs.2009.11.005
33.
Candel
,
S.
,
Durox
,
D.
, and
Schuller
,
T.
,
2004
, “
Flame Interactions as a Source of Noise and Combustion Instabilities
,”
AIAA
Paper No. 2004-2928.10.2514/6.2004-2928
You do not currently have access to this content.