Abstract

Experiments are carried out on the laboratory-scale MICCA-Spray annular combustor to examine the effects of swirlers on combustion instabilities. This system comprises 16 spray-swirl injectors and gives rise to instabilities coupled by azimuthal modes. Five types of swirlers producing clockwise rotation and varying in swirl numbers and pressure drops are considered. These swirlers can be broadly categorized into two groups: lower-swirl and higher-swirl groups, based on their swirl numbers. An arrangement where clockwise and counterclockwise swirlers alternate is also studied. Experiments are performed systematically with liquid heptane at five levels of thermal power and six equivalence ratios. Results reveal that none of the swirlers in the lower-swirl category exhibit instability in the operating region considered, whereas the higher-swirl units feature strong azimuthal instabilities that trace an overall limit cycle envelope with a few short and random bursts. Among the higher-swirl group, a higher pressure drop swirler is associated with a broader instability map. This shows that the transition to instability mainly depends on the swirl number through its effect on the flame structure and that the pressure drop adds to further variations in amplitude and frequency of oscillation. The spin ratio time series indicate that the modes are of mixed type and that their distribution depends on the operating condition. On specifically comparing the spin ratio distribution between a full set of clockwise rotating (CR) swirlers and a configuration where clockwise and counterclockwise rotating swirlers (CCR) are alternatively placed, it is found that there is no definite statistical preference for spin ratio linked to the effect of bulk swirl. In some cases, however, the CCR configuration promotes a broader distribution of spin ratios centered around the standing mode (sr =0) while the CR setup favors azimuthal modes spinning in the counterclockwise direction. An attempt is made to interpret the occurrence of instabilities by making use of flame describing functions (FDFs) measured in a single-injector combustor. It is found that the FDFs corresponding to the two swirler categories (lower-swirl and higher-swirl) are relatively distinct. The observed behavior is tentatively interpreted using an instability analysis in which the injector and upstream plenum are represented by an impedance that shifts the band of instability. The unstable behavior is then linked to the relative position of the FDF phase with respect to the instability band in the frequency range corresponding to the expected azimuthal mode frequency. The phase and gain of the FDF notably depend on the swirl number, and it is possible to distinguish, for the present configuration, a category of low swirl number injectors inducing stable operation and another category of high swirl number units leading to oscillations.

References

1.
Mongia
,
H. C.
,
Held
,
T.
,
Hsiao
,
G.
, and
Pandalai
,
R.
,
2003
, “
Challenges and Progress in Controlling Dynamics in Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
822
829
.10.2514/2.6197
2.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,
AIAA
, Reston, VA.
3.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
4.
Staffelbach
,
G.
,
Gicquel
,
L.
,
Boudier
,
G.
, and
Poinsot
,
T.
,
2009
, “
Large Eddy Simulation of Self Excited Azimuthal Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2909
2916
.10.1016/j.proci.2008.05.033
5.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Modal Dynamics of Self-Excited Azimuthal Instabilities in an Annular Combustion Chamber
,”
Combust. Flame
,
160
(
11
), pp.
2476
2489
.10.1016/j.combustflame.2013.04.031
6.
Prieur
,
K.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2017
, “
A Hysteresis Phenomenon Leading to Spinning or Standing Azimuthal Instabilities in an Annular Combustor
,”
Combust. Flame
,
175
, pp.
283
291
.10.1016/j.combustflame.2016.05.021
7.
Rajendram Soundararajan
,
P.
,
Vignat
,
G.
,
Durox
,
D.
,
Renaud
,
A.
, and
Candel
,
S.
,
2021
, “
Effect of Different Fuels on Combustion Instabilities in an Annular Combustor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p.
031007
.10.1115/1.4049702
8.
Aguilar
,
J. G.
,
Dawson
,
J.
,
Schuller
,
T.
,
Durox
,
D.
,
Prieur
,
K.
, and
Candel
,
S.
,
2021
, “
Locking of Azimuthal Modes by Breaking the Symmetry in Annular Combustors
,”
Combust. Flame
,
234
, p.
111639
.10.1016/j.combustflame.2021.111639
9.
Wolf
,
P.
,
Balakrishnan
,
R.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y.
, and
Poinsot
,
T.
,
2012
, “
Using LES to Study Reacting Flows and Instabilities in Annular Combustion Chambers
,”
Flow, Turbul. Combust.
,
88
(
1–2
), pp.
191
206
.10.1007/s10494-011-9367-7
10.
Wolf
,
P.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y.
,
Müller
,
J.-D.
, and
Poinsot
,
T.
,
2012
, “
Acoustic and Large Eddy Simulation Studies of Azimuthal Modes in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
11
), pp.
3398
3413
.10.1016/j.combustflame.2012.06.016
11.
Pankiewitz
,
C.
, and
Sattelmayer
,
T.
,
2003
, “
Time Domain Simulation of Combustion Instabilities in Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
677
685
.10.1115/1.1582496
12.
Laera
,
D.
,
Schuller
,
T.
,
Prieur
,
K.
,
Durox
,
D.
,
Camporeale
,
S. M.
, and
Candel
,
S.
,
2017
, “
Flame Describing Function Analysis of Spinning and Standing Modes in an Annular Combustor and Comparison With Experiments
,”
Combust. Flame
,
184
, pp.
136
152
.10.1016/j.combustflame.2017.05.021
13.
Ghirardo
,
G.
, and
Juniper
,
M. P.
,
2013
, “
Azimuthal Instabilities in Annular Combustors: Standing and Spinning Modes
,”
Proc. R. Soc. A
,
469
(
2157
), p.
20130232
.10.1098/rspa.2013.0232
14.
Parmentier
,
J.-F.
,
Salas
,
P.
,
Wolf
,
P.
,
Staffelbach
,
G.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2012
, “
A Simple Analytical Model to Study and Control Azimuthal Instabilities in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
7
), pp.
2374
2387
.10.1016/j.combustflame.2012.02.007
15.
Steele
,
R. C.
,
Cowell
,
L. H.
,
Cannon
,
S. M.
, and
Smith
,
C. E.
,
2000
, “
Passive Control of Combustion Instability in Lean Premixed Combustors
,”
ASME J. Eng. Gas Turbines Power
,
122
(
3
), pp.
412
419
.10.1115/1.1287166
16.
Krishnan
,
A.
,
Sujith
,
R.
,
Marwan
,
N.
, and
Kurths
,
J.
,
2021
, “
Suppression of Thermoacoustic Instability by Targeting the Hubs of the Turbulent Networks in a Bluff Body Stabilized Combustor
,”
J. Fluid Mech.
,
916
, p.
A20
.https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/suppression-ofthermoacoustic-instability-by-targeting-the-hubs-of-the-turbulent-networks-in-a-bluff-bodystabilized-combustor/16D904267E7019B421A6815291E533FA
17.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2009
, “
Dynamic Phase Converter for Passive Control of Combustion Instabilities
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
3163
3170
.10.1016/j.proci.2008.05.051
18.
Annaswamy
,
A. M.
, and
Ghoniem
,
A. F.
,
2002
, “
Active Control of Combustion Instability: Theory and Practice
,”
IEEE Control Syst. Mag.
,
22
(
6
), pp.
37
54
.10.1109/MCS.2002.1077784
19.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
20.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Bourgouin
,
J.-F.
, and
Moeck
,
J. P.
,
2014
, “
Dynamics of Swirling Flames
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
147
173
.10.1146/annurev-fluid-010313-141300
21.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Self-Excited Circumferential Instabilities in a Model Annular Gas Turbine Combustor: Global Flame Dynamics
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3127
3134
.10.1016/j.proci.2012.05.061
22.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Moeck
,
J. P.
,
Schuller
,
T.
, and
Candel
,
S.
,
2015
, “
Characterization and Modeling of a Spinning Thermoacoustic Instability in an Annular Combustor Equipped With Multiple Matrix Injectors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p.
021503
.10.1115/1.4028257
23.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Moeck
,
J.
,
Schuller
,
T.
, and
Candel
,
S.
,
2015
, “
A New Pattern of Instability Observed in an Annular Combustor: The Slanted Mode
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3237
3244
.10.1016/j.proci.2014.06.029
24.
Steinberg
,
A. M.
,
Boxx
,
I.
,
Stohr
,
M.
,
Meier
,
W.
, and
Carter
,
C. D.
,
2012
, “
Effects of Flow Structure Dynamics on Thermoacoustic Instabilities in Swirl-Stabilized Combustion
,”
AIAA J.
,
50
(
4
), pp.
952
967
.10.2514/1.J051466
25.
Paschereit
,
C. O.
,
Gutmark
,
E.
, and
Weisenstein
,
W.
,
2000
, “
Excitation of Thermoacoustic Instabilities by Interaction of Acoustics and Unstable Swirling Flow
,”
AIAA J.
,
38
(
6
), pp.
1025
1034
.10.2514/2.1063
26.
Huang
,
Y.
, and
Yang
,
V.
,
2005
, “
Effect of Swirl on Combustion Dynamics in a Lean-Premixed Swirl-Stabilized Combustor
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
1775
1782
.10.1016/j.proci.2004.08.237
27.
Komarek
,
T.
, and
Polifke
,
W.
,
2010
, “
Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
061503
.10.1115/1.4000127
28.
Kim
,
K. T.
,
2016
, “
Combustion Instability Feedback Mechanisms in a Lean-Premixed Swirl-Stabilized Combustor
,”
Combust. Flame
,
171
, pp.
137
151
.10.1016/j.combustflame.2016.06.003
29.
Zhang
,
B.
,
Shahsavari
,
M.
,
Rao
,
Z.
,
Yang
,
S.
, and
Wang
,
B.
,
2021
, “
Thermoacoustic Instability Drivers and Mode Transitions in a Lean Premixed Methane-Air Combustor at Various Swirl Intensities
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6115
6124
.10.1016/j.proci.2020.06.226
30.
Vignat
,
G.
,
Durox
,
D.
,
Prieur
,
K.
, and
Candel
,
S.
,
2019
, “
An Experimental Study Into the Effect of Injector Pressure Loss on Self-Sustained Combustion Instabilities in a Swirled Spray Burner
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5205
5213
.10.1016/j.proci.2018.06.125
31.
Rajendram Soundararajan
,
P.
,
Durox
,
D.
,
Renaud
,
A.
,
Vignat
,
G.
, and
Candel
,
S.
,
2022
, “
Swirler Effects on Combustion Instabilities Analyzed With Measured FDFs, Injector Impedances, and Damping Rates
,”
Combust. Flame
,
238
(
4
), p.
111947
.10.1016/j.combustflame.2021.111947
32.
Vignat
,
G.
,
Durox
,
D.
,
Renaud
,
A.
, and
Candel
,
S.
,
2020
, “
High Amplitude Combustion Instabilities in an Annular Combustor Inducing Pressure Field Deformation and Flame Blow Off
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011016
.10.1115/1.4045515
33.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Moeck
,
J. P.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “
Self-Sustained Instabilities in an Annular Combustor Coupled by Azimuthal and Longitudinal Acoustic Modes
,”
ASME
Paper No. GT2013-95010.10.1115/GT2013-95010
34.
Rajendram Soundararajan
,
P.
,
Durox
,
D.
,
Renaud
,
A.
, and
Candel
,
S.
,
2022
, “
Comparison of Flame Describing Functions Measured in Single and Multiple Injector Configurations
,”
ASME J. Eng. Gas Turbines Power
, epub.10.1115/1.4055451
35.
Patat
,
C.
,
Baillot
,
F.
,
Blaisot
,
J.-B.
, and
Domingues
,
E.
,
2021
, “
Responses of Lean Swirling Spray Flames to Acoustic Pressure and Transverse Velocity Perturbations
,” Symposium on Thermoacoustics in Combustion: Industry Meets Academia, Munich, Germany, Sept. 6–10, Paper No.
8499
.https://hal.archives-ouvertes.fr/hal-03717261/document
36.
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2005
, “
Combustion Dynamics of Inverted Conical Flames
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
1717
1724
.10.1016/j.proci.2004.08.067
You do not currently have access to this content.