Abstract

This work illustrates the results of a wide experimental campaign in the frame of the EU-funded project sCO2-Flex, which focused on the investigation of a MW-scale sCO2 compressor operating in plant-representative conditions. The experimental tests were carried out for four temperature levels between 304.15 K and 309.15 K at a fixed pressure of 79.79 bar, hence covering an extended thermodynamic region close to the critical point. The experimental results are thoroughly discussed with the support of steady computational fluid-dynamics simulations, assuming homogeneous flows and thermodynamic equilibrium for the two-phase flow description. Changing the upstream total state, two peculiar variabilities in the compressor pressure ratio and choking flow rate are experimentally and computationally observed. While the former is mainly related to the single-phase flow thermodynamics, the latter originates from the onset of two-phase flows. As the simulations predict the experimental choking with a maximum error of 3%, the corresponding two-phase speed of sound is analyzed to infer the underlying equilibria between phases. It is found that, for the tested conditions, two-phase flows quickly achieve thermodynamic equilibrium, and non-equilibrium or metastable effects arguably play a marginal role in the process.

References

1.
Angelino
,
G.
,
1968
, “
Carbon Dioxide Condensation Cycles for Power Production
,”
ASME J. Eng. Power
,
90
(
3
), pp.
287
295
.10.1115/1.3609190
2.
Lee
,
J.
,
Lee
,
J. I.
,
Yoon
,
H. J.
, and
Cha
,
J. E.
,
2014
, “
Supercritical Carbon Dioxide Turbomachinery Design for Water-Cooled Small Modular Reactor Application
,”
Nucl. Eng. Des.
,
270
, pp.
76
89
.10.1016/j.nucengdes.2013.12.039
3.
Alfani
,
D.
,
Binotti
,
M.
,
Macchi
,
E.
,
Silva
,
P.
, and
Astolfi
,
M.
,
2021
, “
sCO2 Power Plants for Waste Heat Recovery: Design Optimization and Part-Load Operation Strategies
,”
Appl. Therm. Eng.
,
195
, p.
117013
.10.1016/j.applthermaleng.2021.117013
4.
Romei
,
A.
,
Gaetani
,
P.
,
Giostri
,
A.
, and
Persico
,
G.
,
2020
, “
The Role of Turbomachinery Perfomance in the Optimization of Supercritical Carbon Dioxide Power Systems
,”
ASME J. Turbomach.
,
142
(
7
), p.
071001
.10.1115/1.4046182
5.
Brun
,
K.
,
Friedman
,
P.
, and
Dennis
,
R.
,
2017
,
Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles
,
Woodhead Publishing
, Duxford, UK.
6.
Baltadjiev
,
N. D.
,
Lettieri
,
C.
, and
Spakovszky
,
Z. S.
,
2015
, “
An Investigation of Real Gas Effects in Supercritical CO2 Centrifugal Compressors
,”
ASME J. Turbomach.
,
137
(
9
), p.
091003
.10.1115/1.4029616
7.
Lettieri
,
C.
,
Baltadjiev
,
N. D.
,
Casey
,
M.
, and
Spakovszky
,
Z. S.
,
2014
, “
Low-Flow-Coefficient Centrifugal Compressor Design for Supercritical CO2
,”
ASME J. Turbomach.
,
136
, p.
081008
.10.1115/1.4026322
8.
Allison
,
T. C.
, and
McClung
,
A.
,
2019
, “
Limiting Inlet Conditions for Phase Change Avoidance in Supercritical CO2 Compressors
,”
ASME
Paper No. GT2019-90409.10.1115/GT2019-90409
9.
Lettier
,
C.
,
Paxson
,
D.
,
Spakovszky
,
Z.
, and
Bryanston-Cross
,
P.
,
2018
, “
Characterization of Non-Equilibrium Condensation of Supercritical Carbon Dioxide in a de Laval Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041701
.10.1115/1.4038082
10.
Romei
,
A.
, and
Persico
,
G.
,
2021
, “
Computational Fluid-Dynamic Modeling of Two-Phase Compressible Flows of Carbon Dioxide in Supercritical Conditions
,”
Appl. Therm. Eng.
,
190
, p.
116816
.10.1016/j.applthermaleng.2021.116816
11.
Nakagawa
,
M.
,
Berana
,
M. S.
, and
Kishine
,
A.
,
2009
, “
Supersonic Two-Phase Flow of CO2 Through Converging–Diverging Nozzles for the Ejector Refrigeration Cycle
,”
Int. J. Refrig.
,
32
(
6
), pp.
1195
1202
.10.1016/j.ijrefrig.2009.01.015
12.
Persico
,
G.
,
Gaetani
,
P.
,
Romei
,
A.
,
Toni
,
L.
,
Bellobuono
,
E.
, and
Valente
,
R.
,
2021
, “
Implications of Phase Change on the Aerodynamics of Centrifugal Compressors for Supercritical Carbon Dioxide Applications
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041007
.10.1115/1.4049924
13.
Wright
,
S.
,
Radel
,
R.
,
Vernon
,
M.
,
Rochau
,
G.
, and
Pickard
,
P.
,
2010
, “
Operation and Analysis of a Supercritical CO2 Brayton Cycle
,” SANDIA, Albuquerque, NM, Report No. SAND2010-0171.
14.
Pecnik
,
R.
,
Rinaldi
,
E.
, and
Colonna
,
P.
,
2012
, “
Computational Fluid Dynamics of a Radial Compressor Operating With Supercritical CO2
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
122301
.10.1115/1.4007196
15.
Noall
,
J. S.
, and
Pasch
,
J. J.
,
2014
, “
Achievable Efficiency and Stability of Supercritical CO2 Compression Systems Main Compressor Design Discussion
,”
The Fourth International Symposium—Supercritical CO2 Power Cycles
, Pittsburgh, PA, Sept. 9–10, Paper No. 51.https://www.semanticscholar.org/paper/Achievable-Efficiency-and-Stability-of-CO2-Systems-Noall-Nichols/4247c8d427913891c4f5097aeed73a384bb2d04a
16.
Hacks
,
A.
,
Vojacek
,
A.
,
Dohmen
,
H.
, and
Brillert
,
D.
,
2018
, “
Experimental Investigation of the sCO2-HeRo Compressor
,”
Second European sCO2 Conference
, Essen, Germany, Aug. 30–31, pp.
50
59
.https://duepublico2.unidue.de/servlets/MCRFileNodeServlet/duepublico_derivate_00046044/Hacks_et_al_Experimental_investigation.pdf
17.
Cho
,
S. K.
,
Son
,
S.
,
Lee
,
J.
,
Lee
,
S.-W.
,
Jeong
,
Y.
,
Oh
,
B. S.
, and
Lee
,
J. I.
,
2021
, “
Optimum Loss Models for Performance Prediction of Supercritical CO2 Centrifugal Compressor
,”
Appl. Therm. Eng.
,
184
, p.
116255
.10.1016/j.applthermaleng.2020.116255
18.
Clementoni
,
E.
,
2021
, “
Comparison of Compressor Performance Map Predictions to Test Data for a Supercritical Carbon Dioxide Brayton Power System
,”
ASME
Paper No. GT202158763. 10.1115/GT202158763
19.
Cich
,
S.
,
Moore
,
J.
,
Kulhanek
,
C.
, and
Mortzheim
,
J.
,
2020
, “
Development and Testing of a Supercritical CO2 Compressor Operating Near the Dome
,”
Turbomachinery and Pump Symposia
,
Texas A & M University
,
Houston, TX
, Sept. 15–17.
20.
Cich
,
S.
,
Moore
,
J.
,
Kulhanek
,
C.
,
Towler
,
M.
, and
Mortzheim
,
J.
,
2021
, “
Mechanical Design and Testing of a 2.5 MW SCO2 Compressor Loop
,”
ASME
Paper No. GT202104155. 10.1115/GT202104155
21.
Mortzheim
,
J.
,
Hofer
,
D.
,
Piebe
,
S.
,
McClung
,
A.
,
Jeffrey Moore
,
J.
, and
Stefan
,
C.
,
2021
, “
Challenges With Measuring Supercritical CO2 Compressor Performance When Approaching the Liquid-Vapor Dome
,”
ASME
Paper No. GT2021-59527.10.1115/GT2021-59527
22.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple‐Point Temperature to 1100 K at Pressures Up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.10.1063/1.555991
23.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
24.
Guidotti
,
E.
,
Toni
,
L.
,
Rubino
,
D. T.
,
Tapinassi
,
L.
,
Naldi
,
G.
,
Koyyalamudi
,
V.
, and
Prasad
,
S.
, “
Influence of Cavity Flows Modeling on Centrifugal Compressor Stages Performance Prediction Across Different Flow Coefficient Impellers
,”
ASME
Paper No. GT2014-25830. 10.1115/GT2014-25830
25.
Pham
,
H. S.
,
Alpy
,
N.
,
Ferrasse
,
J. H.
,
Boutin
,
O.
,
Tothill
,
M.
,
Quenaut
,
J.
,
Gastaldi
,
O.
,
Cadiou
,
T.
, and
Saez
,
M.
,
2016
, “
An Approach for Establishing the Performance Maps of the SC-CO2 Compressor: Development and Qualification by Means of CFD Simulations
,”
Int. J. Heat Fluid Flow
,
61
, pp.
379
394
.10.1016/j.ijheatfluidflow.2016.05.017
26.
Brennen
,
C. E.
,
2005
, “
Homogeneous Flows
,”
Fundamentals of Multiphase Flow
,
Cambridge University Press
, Cambridge, UK, pp.
176
198
.
27.
Moraga
,
F.
,
Hofer
,
D.
,
Saxena
,
S.
, and
Mallina
,
R.
,
2017
, “
Numerical Approach for Real Gas Simulations: Part I – Tabular fluid Properties for Real Gas Analysis
,”
ASME
Paper No. GT2017-63148
. 10.1115/GT2017-63148
28.
Saxena
,
S.
,
Mallina
,
R.
,
Moraga
,
F.
, and
Hofer
,
D.
,
2017
, “
Numerical Approach for Real Gas Simulations: Part II – Flow Simulation for Supercritical CO2 Centrifugal Compressor
,”
ASME
Paper No. GT2017-63149
. 10.1115/GT2017-63149
29.
Karaefe
,
R. E.
,
Post
,
P.
,
Sembritzky
,
M.
,
Schramm
,
A.
,
di Mare
,
F.
,
Kunick
,
M.
, and
Gampe
,
U.
,
2020
, “
Numerical Investigation of a Centrifugal Compressor for Supercritical CO2 Cycles
,”
ASME
Paper No. GT2020-15194.10.1115/GT2020-15194
30.
Wood
,
A. B.
,
1941
,
A Textbook of Sound: Being an Account of the Physics of Vibrations With Special Reference to Recent Theoretical and Technical Developments
,
The Macmillan Company
,
New York
.
31.
Anderson
,
M.
,
2021
, “
Compressor Map Corrections for Highly Non-Linear Fluid Properties
,”
ASME
Paper No. GT2021-60275.10.1115/GT2021-60275
32.
Flatten
,
T.
, and
Lund
,
H.
,
2011
, “
Relaxation Two-Phase Flow Models and the Subcharacteristic Condition
,”
Math. Models Methods Appl. Sci.
,
21
(
12
), pp.
2379
2407
.10.1142/S0218202511005775
You do not currently have access to this content.