Abstract

This paper presents large-eddy and direct numerical simulations of buoyancy-driven convection in sealed and open rapidly rotating cavities for Rayleigh numbers in the range 107–109, and axial throughflow Reynolds numbers 2000 and 5600. Viscous heating due to the Ekman layer scrubbing effect, which has previously been found responsible for the difference in sealed cavity shroud Nusselt number predictions between a compressible N–S solver and an incompressible counterpart using the Boussinesq approximation, is discussed and scaled up to engine conditions. For the open cavity with an axial throughflow, laminar Ekman layer behavior of the mean flow statistics is confirmed up to the highest condition in this paper. The Buoyancy number Bo is found useful to indicate the influence of an axial throughflow. For the conditions studied the mean velocities are subject to Ra, while the velocity fluctuations are affected by Bo. A correlation, Nu=0.169(Ra)0.318, obtained with both the sealed and open cavity shroud heat transfer solutions, agrees with that for free gravitational convection between horizontal plates within 16% for the range of Ra considered.

References

1.
Luberti
,
D.
,
Tang
,
H.
,
Scobie
,
J. A.
,
Pountney
,
O. J.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2020
, “
Influence of Temperature Distribution on Radial Growth of Compressor Discs
,”
ASME J. Eng. Gas Turbines Power
,
142
(
7
), p.
071004
.10.1115/1.4046704
2.
Fitzpatrick
,
J. N.
,
2014
, “
Coupled Thermal-Fluid Analysis With Flowpath-Cavity Interaction in a Gas Turbine Engine
,”
Master thesis
,
Purdue University
,
West Lafayette, IN
.http://hdl.handle.net/1805/4441
3.
Owen
,
J. M.
, and
Long
,
C. A.
,
2015
, “
Review of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
137
(
11
), p.
111001
.10.1115/1.4031039
4.
Atkins
,
N. R.
,
2013
, “
Investigation of a Radial-Inflow Bleed as a Potential for Compressor Clearance Control
,”
ASME
Paper No. GT2013-95768.10.1115/GT2013-95768
5.
Sun
,
Z.
,
Amirante
,
D.
,
Chew
,
J. W.
, and
Hills
,
N. J.
,
2016
, “
Coupled Aerothermal Modeling of a Rotating Cavity With Radial Inflow
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032505
.10.1115/1.4031387
6.
Bohn
,
D.
,
Deuker
,
E.
,
Emunds
,
R.
, and
Gorzelitz
,
V.
,
1995
, “
Experimental and Theoretical Investigations of Heat Transfer in Closed Gas-Filled Rotating Annuli
,”
ASME J. Turbomach.
,
117
(
1
), pp.
175
183
.10.1115/1.2835635
7.
Bohn
,
D.
, and
Gier
,
J.
,
1998
, “
The Effect of Turbulence on the Heat Transfer in Closed Gas-Filled Rotating Annuli for Different Rayleigh Numbers
,”
ASME
Paper No. 98-GT-542.10.1115/98-GT-542
8.
Sun
,
Z.
,
Kilfoil
,
A.
,
Chew
,
J. W.
, and
Hills
,
N. J.
,
2004
, “
Numerical Simulation of Natural Convection in Stationary and Rotating Cavities
,”
ASME
Paper No. GT2004-53528.10.1115/GT2004-53528
9.
King
,
M. P.
,
Wilson
,
M.
, and
Owen
,
J. M.
,
2007
, “
Rayleigh-Bénard Convection in Open and Closed Rotating Cavities
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
305
311
.10.1115/1.2432898
10.
Pitz
,
D. B.
,
Chew
,
J. W.
,
Marxen
,
O.
, and
Hills
,
N. J.
,
2017
, “
Direct Numerical Simulation of Rotating Cavity Flows Using a Spectral Element-Fourier Method
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
072602
.10.1115/1.4035593
11.
Pitz
,
D. B.
,
Chew
,
J. W.
, and
Marxen
,
O.
,
2019
, “
Large-Eddy Simulation of Buoyancy-Induced Flow in a Sealed Rotating Cavity
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021020
.10.1115/1.4041113
12.
Gao
,
F.
,
Chew
,
J. W.
, and
Pitz
,
D. B.
,
2019
, “
Numerical Study of Buoyancy-Driven Flow in a Closed Rotating Annulus
,” GPPS, Beijing, China, Paper No.
GPPS-BJ-2019-0034
.https://www.researchgate.net/publication/336315174_Numerical_Study_of_Buoyancy-Driven_Flow_in_a_Closed_Rotating_Annulus
13.
Gao
,
F.
,
Pitz
,
D. B.
, and
Chew
,
J. W.
,
2020
, “
Numerical Investigation of Buoyancy-Induced Flow in a Sealed Rapidly Rotating Disc Cavity
,”
Int. J. Heat Mass Transfer
,
147
, p.
118860
.10.1016/j.ijheatmasstransfer.2019.118860
14.
Tang
,
H.
, and
Owen
,
J. M.
,
2018
, “
Theoretical Model of Buoyancy-Induced Heat Transfer in Closed Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032605
.10.1115/1.4037926
15.
Pitz
,
D. B.
,
Chew
,
J. W.
, and
Marxen
,
O.
,
2019
, “
Effect of an Axial Throughflow on Buoyancy-Induced Flow in a Rotating Cavity
,”
Int. J. Heat Fluid Flow
,
80
, p.
108468
.10.1016/j.ijheatfluidflow.2019.108468
16.
Hollands
,
K. G. T.
,
Raithby
,
G. D.
, and
Konicek
,
L.
,
1975
, “
Correlation Equations for Free Convection Heat Transfer in Horizontal Layers of Air and Water
,”
Int. J. Heat Mass Transfer
,
18
(
7–8
), pp.
879
884
.10.1016/0017-9310(75)90179-9
17.
Grossmann
,
S.
, and
Lohse
,
D.
,
2000
, “
Scaling in Thermal Convection: A Unifying Theory
,”
J. Fluid Mech.
,
407
, pp.
27
56
.10.1017/S0022112099007545
18.
Farthing
,
P. R.
,
Long
,
C. A.
,
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1992
, “
Rotating Cavity With Axial Throughflow of Cooling Air: Flow Structure
,”
ASME J. Turbomach.
,
114
(
1
), pp.
237
246
.10.1115/1.2927991
19.
Farthing
,
P. R.
,
Long
,
C. A.
,
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1992
, “
Rotating Cavity With Axial Throughflow of Cooling Air: Heat Transfer
,”
ASME J. Turbomach.
,
114
(
1
), pp.
229
236
.10.1115/1.2927990
20.
Bohn
,
D. E.
,
Deutsch
,
G. N.
,
Simon
,
B.
, and
Burkhardt
,
C.
,
2000
, “
Flow Visualisation in a Rotating Cavity With Axial Throughflow
,”
ASME
Paper No. 2000-GT-0280.10.1115/2000-GT-0280
21.
Long
,
C. A.
,
Alexiou
,
A.
, and
Smout
,
P. D.
,
2003
, “
Heat Transfer in H.P. Compressor Gas Turbine Internal Air Systems: Measurements From the Peripheral Shroud of a Rotating Cavity With Axial Throughflow
,” ICFMHTT, Victoria Falls, Zambia, Paper No.
LC1
.https://www.researchgate.net/publication/259659507_Heat_Transfer_in_HP_Compressor_Gas_Turbine_Internal_Air_Systems_Measurements_from_the_Peripheral_Shroud_
22.
Long
,
C. A.
, and
Childs
,
P. R. N.
,
2007
, “
Shroud Heat Transfer Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1405
1417
.10.1016/j.ijheatfluidflow.2007.04.009
23.
Long
,
C. A.
,
Miché
,
N. D. D.
, and
Childs
,
P. R. N.
,
2007
, “
Flow Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1391
1404
.10.1016/j.ijheatfluidflow.2007.04.010
24.
Atkins
,
N. R.
, and
Kanjirakkad
,
V.
,
2014
, “
Flow in a Rotating Cavity With Axial Throughflow at Engine Representative Conditions
,”
ASME
Paper No. GT2014-27174.10.1115/GT2014-27174
25.
Puttock-Brown
,
M. R.
,
Rose
,
M. G.
, and
Long
,
C. A.
,
2017
, “
Experimental and Computational Investigation of Rayleigh-Bénard Flow in the Rotating Cavities of a Core Compressor
,”
ASME
Paper No. GT2017-64884.10.1115/GT2017-64884
26.
Puttock-Brown
,
M. R.
, and
Rose
,
M. G.
,
2018
, “
Formation and Evolution of Rayleigh-Bénard Streaks in Rotating Cavities
,”
ASME
Paper No. GT2018-75497.10.1115/GT2018-75497
27.
Lloyd
,
J. R.
, and
Moran
,
W. R.
,
1974
, “
Natural Convection Adjacent to Horizontal Surface of Various Planforms
,”
ASME J. Heat Transfer
,
96
(
4
), pp.
443
447
.10.1115/1.3450224
28.
Bohn
,
D.
,
Ren
,
J.
, and
Tuemmers
,
C.
,
2006
, “
Investigation of the Unstable Flow Structure in a Rotating Cavity
,”
ASME
Paper No. GT2006-90494.10.1115/GT2006-90494
29.
Sun
,
Z.
,
Lindblad
,
K.
,
Chew
,
J. W.
, and
Young
,
C.
,
2007
, “
LES and RANS Investigations Into Buoyancy-Affected Convection in a Rotating Cavity With a Central Axial Throughflow
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
318
325
.10.1115/1.2364192
30.
Tian
,
S.
,
Tao
,
Z.
,
Ding
,
S.
, and
Xu
,
G.
,
2008
, “
Computation of Buoyancy-Induced Flow in a Heated Rotating Cavity With an Axial Throughflow of Cooling Air
,”
Int. J. Heat Mass Transfer
,
51
(
3–4
), pp.
960
968
.10.1016/j.ijheatmasstransfer.2007.09.040
31.
Tan
,
Q.
,
Ren
,
J.
, and
Jiang
,
H.
,
2009
, “
Prediction of Flow Features in Rotating Cavities With Axial Throughflow by RANS and LES
,”
ASME
Paper No. GT2009-59428.10.1115/GT2009-59428
32.
Tan
,
Q.
,
Ren
,
J.
, and
Jiang
,
H.
,
2014
, “
Prediction of 3d Unsteady Flow and Heat Transfer in Rotating Cavity by Discontinuous Galerkin Method and Transition Model
,”
ASME
Paper No. GT2014-26584.10.1115/GT2014-26584
33.
Amirante
,
D.
, and
Hills
,
N. J.
,
2015
, “
Large-Eddy Simulations of Wall Bounded Turbulent Flows Using Unstructured Linear Reconstruction Techniques
,”
ASME J. Turbomach.
,
137
(
5
), p.
051006
.10.1115/1.4028549
34.
Blackburn
,
H. M.
, and
Sherwin
,
S. J.
,
2004
, “
Formulation of a Galerkin Spectral Element-Fourier Method for Three-Dimensional Incompressible Flows in Cylindrical Geometries
,”
J. Comput. Phys.
,
197
(
2
), pp.
759
778
.10.1016/j.jcp.2004.02.013
35.
Gao
,
F.
,
Poujol
,
N.
,
Chew
,
J. W.
, and
Beard
,
P. F.
,
2018
, “
Advanced Numerical Simulation of Turbine Rim Seal Flows and Consideration for RANS Turbulence Modelling
,”
ASME
Paper No. GT2018-75116.10.1115/GT2018-75116
36.
El Khoury
,
G. K.
,
Schlatter
,
P.
,
Noorani
,
A.
,
Fischer
,
P. F.
,
Brethouwer
,
G.
, and
Johansson
,
A. V.
,
2013
, “
Direct Numerical Simulation of Turbulent Pipe Flow at Moderately High Reynolds Numbers
,”
Flow Turbul. Combust.
,
91
(
3
), pp.
475
495
.10.1007/s10494-013-9482-8
37.
Jiang
,
H.
,
Zhu
,
X.
,
Wang
,
D.
,
Huisman
,
S. G.
, and
Sun
,
C.
,
2020
, “
Supergravitational Turbulent Thermal Convection
,”
Sci. Adv.
,
6
(
40
), p.
eabb8676
.10.1126/sciadv.abb8676
38.
Ahlers
,
G.
,
Grossmann
,
S.
, and
Lohse
,
D.
,
2009
, “
Heat Transfer and Large Scale Dynamics in Turbulent Rayleigh-Bénard Convection
,”
Rev. Mod. Phys.
,
81
(
2
), pp.
503
537
.10.1103/RevModPhys.81.503
39.
Greenspan
,
H. P.
,
1968
,
The Theory of Rotating Fluids
,
Cambridge University Press
,
Cambridge, UK
.
40.
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1980
, “
Velocity Measurements Inside a Rotating Cylindrical Cavity With a Radial Outflow of Fluid
,”
J. Fluid Mech.
,
99
(
1
), pp.
111
127
.10.1017/S0022112080000547
41.
Kilfoil
,
A. S. R.
, and
Chew
,
J. W.
,
2009
, “
Modelling of Buoyancy-Affected Flow in co-Rotating Disc Cavities
,”
ASME Paper No. GT2009-59214.
42.
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1979
, “
Vortex Breakdown in a Rotating Cylindrical Cavity
,”
J. Fluid Mech.
,
90
(
1
), pp.
109
127
.10.1017/S0022112079002093
You do not currently have access to this content.