Abstract

This paper presents local Nusselt numbers computed from experimental measurements of surface temperature of compressor disks in a multiple rotating cavity test rig with axial throughflow. A validated two-dimensional (2D) steady-state heat conduction analysis methodology is presented, using the actual test geometry, and 95% confidence intervals calculated using Monte Carlo simulation. Sensitivity of the solution to curve fitting types, geometric simplification, and surface instrumentation are explored. The results indicate that polynomial curves fits, while computational simple, are unsuitable especially at higher orders. It is shown that geometric simplifications, that typically simplify the algorithmic implementation, may also omit significant variation in heat flux at critical stress relieving locations. The effect of reducing measurement points in the analysis is to both overpredict heat transfer and increase the uncertainty of the results. Finally, the methodology is applied to previously published thermal data from the University of Sussex, facilitating qualitative discussion on the influence of the governing parameters. While this study does not overcome the inherent uncertainty associated with inverse solutions, it is intended to present a methodology that is readily available to the wider community for the analysis of thermal test data and suggests some guidelines at the planning and postprocessing stages. The range of experiment reported here covers: 1.13 × 105 < Rez < 5.14 × 105, 1.65 × 106 < Reθ < 3.16 × 106, 0.10 < Ro < 0.60, and 3.40 × 1011 < Gr < 1.25 × 1012.

References

1.
Owen
,
J. M.
,
1979
, “
On the Computation of Heat-Transfer Coefficients From Imperfect Temperature Measurements
,”
J. Mech. Eng. Sci.
,
21
(
5
), pp.
323
334
.10.1243/JMES_JOUR_1979_021_055_02
2.
Cooke
,
A.
,
Childs
,
P.
, and
Long
,
C.
,
2006
, “
An Investigation Into the Uncertainty of Turbomachinery Disc Heat Transfer Calculations Using Monte Carlo Simulation
,”
ASME
Paper No. GT2006-90143.10.1115/GT2006-90143
3.
Alexiou
,
A.
,
Hills
,
N. J.
,
Long
,
C.
,
Turner
,
A. B.
, and
Millward
,
J. A.
,
2000
, “
Heat Transfer in High-Pressure Compressor Gas Turbine Internal Air Systems: A Rotating Disc-Cone Cavity With Axial Throughflow
,”
Exp. Heat Transfer
,
13
(
4
), pp.
299
328
.10.1080/08916150050175471
4.
Patounas
,
D. S.
,
Long
,
C. A.
, and
Childs
,
P. R. N.
,
2009
, “
Disc Heat Transfer in Gas Turbine Compressor Internal Air Systems
,”
Eighth European Conference on Turbomachinery: Fluid Dynamics and Thermodynamics
(
ETC 2009
), Graz, Austria, Mar. 23–27, pp.
377
386
.https://www.researchgate.net/publication/293098964_Disc_heat_transfer_in_gas_turbine_compressor_internal_air_systems
5.
Tang
,
H.
,
Shardlow
,
T.
, and
Michael
,
O. J.
,
2015
, “
Use of Fin Equation to Calculate Nusselt Numbers for Rotating Disks
,”
ASME. J. Turbomach.
,
137
(
12
), p.
121003
.10.1115/1.4031355
6.
Atkins
,
N. R.
, and
Kanjirakkad
,
V.
,
2014
, “
Flow in a Rotating Cavity With Axial Throughflow at Engine Representative Conditions
,”
ASME
Paper No. GT2014-27174.10.1115/GT2014-27174
7.
Owen
,
J. M.
, and
Long
,
C.
,
2015
, “
Review of Buoyancy Induced Flow in Rotating Cavities
,”
ASME. J. Turbomach.
,
137
(
11
), p.
111001
.10.1115/1.4031039
8.
Farthing
,
P. R.
,
Long
,
C. A.
,
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1992
, “
Rotating Cavity With Axial Throughflow of Cooling Air: Heat Transfer
,”
ASME J. Turbomach.
,
114
(
1
), pp.
229
236
.10.1115/1.2927990
9.
Owen
,
J. M.
, and
Powell
,
J.
,
2006
, “
Buoyancy-Induced Flow in a Heated Rotating Cavity
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
128
134
.10.1115/1.2032451
10.
Günther
,
A.
,
Uffrecht
,
W.
, and
Odenbach
,
S.
,
2012
, “
Local Measurements of Disk Heat Transfer in Heated Rotating Cavities for Several Flow Regimes
,”
ASME J. Turbomach.
,
134
(
5
), p.
051016
.10.1115/1.4003965
11.
The MathWorks, Inc.
,
2019
, “MATLAB, Version 9.6.0 (R2019a),”
The MathWorks Inc
,
Natick, MA
.
12.
Puttock-Brown
,
M. R.
,
2018
, “
Experimental and Numerical Investigation of Flow Structure and Heat Transfer in Gas Turbine HP Compressor Secondary Air Systems
,” Ph.D. thesis,
University of Sussex
,
Falmer, UK
.
13.
Howell
,
J. R.
,
1982
,
A Catalogue of Radiation Configuration Factors
,
McGraw-Hill Book Company
,
New York
.
14.
Long
,
C. A.
,
1999
,
Essential Heat Transfer
,
Longman
,
London, UK
.
15.
Alexiou
,
A.
,
2000
, “
Disc Heat Transfer in Gas Turbine H. P. Compressors Internal Air Systems
,” Ph.D. thesis,
University of Sussex
,
Falmer, UK
.
16.
Long
,
C. A.
, and
Childs
,
P. R. N.
,
2007
, “
Shroud Heat Transfer Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1405
1417
.10.1016/j.ijheatfluidflow.2007.04.009
17.
Howell
,
J. R.
,
1969
, “
Application of Monte Carlo to Heat Transfer Problems
,” Thomas F. Irvine, and James P. Hartnett, eds.,
Advances in Heat Transfer
, Elsevier, Amsterdam, The Netherlands, Vol.
5
, pp.
1
54
.10.1016/S0065-2717(08)70128-X
18.
Haji-Sheikh
,
A.
, and
Buckingham
,
F. P.
,
1993
, “
Multidimensional Inverse Heat Conduction Using the Monte Carlo Method
,”
ASME J. Heat Transfer
,
115
(
1
), pp.
26
33
.10.1115/1.2910662
19.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1999
,
Experimental and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
20.
Tang
,
H.
,
Puttock-Brown
,
M. R.
, and
Michael Owen
,
J.
,
2018
, “
Buoyancy-Induced Flow and Heat Transfer in Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), p.
71902
.10.1115/1.4038756
You do not currently have access to this content.