Abstract

Ingress is the penetration of hot mainstream fluid into the cavity formed between the turbine disk (rotor) and its adjacent casing (stator). Gas turbine engine designers use rim-seals fitted at the periphery of the disks, and a superposed sealant flow—typically fed through the bore of the stator—is used to reduce, or in the limit prevent, ingress. Parasitic leakage enters the cavity through pathways created between mating interfaces of engine components. Owing to the aggressive thermal and centrifugal loading experienced during the turbine operating cycle, the degree of leakage and its effect on ingress are difficult to predict. This paper considers the potential for leakage flows to be conditioned in order to minimize their parasitic effect on disk cooling, and ultimately engine, performance. Measurements of static and total pressure, swirl, and species concentration were used to assess the performance of a simple axial clearance rim-seal over a range of nondimensional leakage flow rates. A computational model was used to provide flow visualization to support the interpretation of flow structures derived from the experiments. Data are presented to investigate the effects of swirling the leakage flow in accordance with, and counter to, the disk rotation. The injected momentum from the leakage created a toroidal vortex in the outer part of the cavity. Coswirl was found to improve the sealing effectiveness by up to 15% compared to the axially introduced baseline and counterswirled configurations. Varying the momentum of the leakage flow was considered by passing consistent mass-flows through a range of leakage outlet areas. Increasing the momentum was seen to increase the influence of the toroidal vortex on the flow structure in the cavity, which in turn influenced the sealing effectiveness.

References

1.
Snook
,
D. D.
,
Benjamin
,
E. D.
, and
Humanchuk
,
D. J.
,
2009
, “
Gas Turbine Including Flexible Chordal Hinge Seal
,” U.S. Patent No. US20090110549A1.
2.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2016
, “
Review of Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
120801
.10.1115/1.4033938
3.
Chew
,
J. W.
,
Gao
,
F.
, and
Palermo
,
D. M.
,
2019
, “
Flow Mechanisms in Axial Turbine Rim Sealing
,”
Proc. Inst. Mech. Eng., Part C
,
233
(
23–24
), pp.
7637
7657
.10.1177/0954406218784612
4.
Coren
,
D. D.
,
Atkins
,
N. R.
,
Long
,
C. A.
,
Eastwood
,
D.
,
Childs
,
P. R. N.
,
Guijarro-Valencia
,
A.
, and
Dixon
,
J. A.
,
2011
, “
The Influence of Turbine Stator Well Coolant Flow Rate and Passage Configuration on Cooling Effectiveness
,”
ASME
Paper No. GT2011-46448.10.1115/GT2011-46448
5.
Andreini
,
A.
,
Da Soghe
,
R.
, and
Facchini
,
B.
,
2010
, “
Turbine Stator Well CFD Studies: Effects of Coolant Supply Geometry on Cavity Sealing Performance
,”
ASME J. Turbomach.
,
133
(
2
), p.
021008
.10.1115/1.4000570
6.
Clark
,
K.
,
Barringer
,
M.
,
Thole
,
K.
,
Clum
,
C.
,
Hiester
,
P.
,
Memory
,
C.
, and
Robak
,
C.
,
2017
, “
Effects of Purge Jet Momentum on Sealing Effectiveness
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
031904
.10.1115/1.4034545
7.
Ong
,
J.
,
Miller
,
R. J.
, and
Uchida
,
S.
,
2012
, “
The Effect of Coolant Injection on the Endwall Flow of a High Pressure Turbine
,”
ASME J. Turbomach.
,
134
(
5
), p.
051003
.10.1115/1.4003838
8.
Zlatinov
,
M. B.
,
Tan
,
C. S.
,
Little
,
D.
, and
Montgomery
,
M.
,
2016
, “
Effect of Purge Flow Swirl on Hot-Gas Ingestion Into Turbine Rim Cavities
,”
J. Propul. Power
,
32
(
5
), pp.
1055
1066
.10.2514/1.B35775
9.
Zhang
,
F.
,
Wang
,
X.
,
Li
,
J.
, and
Zheng
,
D.
,
2017
, “
Numerical Investigation on the Effect of Radial Location of Sealing Air Inlet and Its Geometry on the Sealing Performance of a Stator-Well Cavity
,”
Int. J. Heat Mass Transfer
,
115
(
pt. B
), pp.
820
832
.10.1016/j.ijheatmasstransfer.2017.08.053
10.
Patinios
,
M.
,
Ong
,
I. L.
,
Scobie
,
J. A.
,
Lock
,
G. D.
, and
Sangan
,
C. M.
,
2019
, “
Influence of Leakage Flows on Hot Gas Ingress
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021010
.10.1115/1.4040846
11.
Wang
,
R.
,
Liu
,
G.
,
Du
,
Q.
,
Lian
,
Z.
, and
Xie
,
L.
,
2019
, “
An Improved Control Method of Rim Seal Based on Auxiliary Sealing Holes
,” GPPS, Beijing, China, Sept. 16–18, Paper No.
BJ-2019-0096
.10.33737/gpps19-bj-096
12.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part 1: Externally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021012
.10.1115/1.4006609
13.
Hualca
,
F. P. T.
,
Horwood
,
J. T. M.
,
Sangan
,
C. M.
,
Lock
,
G. D.
, and
Scobie
,
J. A.
,
2019
, “
The Effect of Vanes and Blades on Ingress in Gas Turbines
,”
ASME
Paper No. GT2019-90987.10.1115/GT2019-90987
14.
Halila
,
E. E.
,
Lenahan
,
D. T.
, and
Thomas
,
T. T.
,
1982
, “
High Pressure Turbine Test Hardware Detailed Design Report
,” NASA, Washington, DC, Report No.
NASA-CR-167955
.https://catalogue.nla.gov.au/Record/3880806
15.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1989
,
Flow and Heat Transfer in Rotating-Disc Systems
(Rotor-Stator Systems), Vol.
1
,
Research Studies Press/John Wiley
,
Taunton, UK/New York
.
16.
Schreiner
,
B. D. J.
,
Wilson
,
M.
,
Li
,
Y. S.
, and
Sangan
,
C. M.
,
2020
, “
Effect of Purge on the Secondary Flow-Field of a Gas Turbine Blade-Row
,”
ASME J. Turbomach.
, 142(10), p. 101006.10.1115/1.4047185
17.
Schlichting
,
H.
, and
Gersten
,
K.
,
2016
,
Boundary Layer Theory
,
Springer
,
Berlin
, pp.
624
640
.
18.
Sangan
,
C. M.
,
Lalwani
,
Y.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2014
, “
Fluid Dynamics of a Gas Turbine Wheel-Space With Ingestion
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
5
), pp.
508
524
.10.1177/0957650914528698
19.
Horwood
,
J. T. M.
,
Hualca
,
F. P.
,
Wilson
,
M.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Lock
,
G. D.
,
Dahlqvist
,
J.
, and
Fridh
,
J.
,
2019
, “
Flow Instabilities in Gas Turbine Chute Seals
,”
ASME J. Eng. Gas Turbines Power
, 142(2), p.
021019
.10.1115/1.4045148
20.
Carvalho Figueiredo
,
A. J.
,
Jones
,
R. R.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Lock
,
G. D.
,
Sangan
,
C. M.
, and
Cleaver
,
D. J.
,
2019
, “
Volumetric Velocimetry Measurements of Film Cooling Jets
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031021
.10.1115/1.4041206
21.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
You do not currently have access to this content.