Abstract

The actuator line method (ALM), combining a lumped-parameter representation of the rotating blades with the computational fluid dynamics (CFD) resolution of the turbine flow field, stands out among the modern simulation methods for wind turbines as probably the most interesting compromise between accuracy and computational cost. Being however a method relying on tabulated coefficients for modeling the blade-flow interaction, the correct implementation of the submodels to account for higher-order aerodynamic effects is pivotal. Inter alia, the introduction of a dynamic stall model is extremely challenging: first, it is important to extrapolate a correct value of the angle of attack (AoA) from the solved flow field; second, the AoA history needed to calculate the rate of dynamic variation of the angle itself is characterized by a low signal-to-noise ratio, leading to severe numerical oscillations of the solution. The study introduces a robust procedure to improve the quality of the AoA signal extracted from an ALM simulation. It combines a novel method for sampling the inflow velocity from the numerical flow field with a low-pass filtering of the corresponding AoA signal based on cubic spline smoothing (CSS). Such procedure has been implemented in the actuator line module developed by the authors for the commercial ansysfluent solver. To verify the reliability of the methodology, two-dimensional (2D) unsteady Reynolds-averaged Navier–Stokes (URANS) simulations of a test two-blade Darrieus H-rotor, for which high-fidelity experimental and numerical blade loading data were available, have been performed for a selected unstable operation point.

References

1.
Cooper
,
P.
,
2010
, “
Development and Analysis of Vertical-Axis Wind Turbines
,”
Wind Power Generation and Wind Turbine Design
, WIT Press, Southampton, UK, pp.
277
302
. 10.2495/978-1-84564-205-1/08
2.
Paulsen
,
U. S.
,
Madsen
,
H. A.
,
Hattel
,
J. H.
,
Baran
,
I.
, and
Nielsen
,
P. H.
,
2013
, “
Design Optimization of a 5 MW Floating Offshore Vertical-Axis Wind Turbine
,”
Energy Procedia
,
35
, pp.
22
32
.10.1016/j.egypro.2013.07.155
3.
Bianchini
,
A.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
Design Guidelines for H-Darrieus Wind Turbines: Optimization of the Annual Energy Yield
,”
Energy Convers. Manage.
,
89
, pp.
690
707
.10.1016/j.enconman.2014.10.038
4.
Simão Ferreira
,
C. J.
,
van Zuijlen
,
A.
,
Bijl
,
H.
,
van Bussel
,
G.
, and
van Kuik
,
G.
,
2010
, “
Simulating Dynamic Stall in a Two-Dimensional Vertical-Axis Wind Turbine: Verification and Validation With Particle Image Velocimetry Data
,”
Wind Energy
,
13
(
1
), pp.
1
17
.10.1002/we.330
5.
Marten
,
D.
,
Lennie
,
M.
,
Pechlivanoglou
,
G.
,
Paschereit
,
C. O.
,
Bianchini
,
A.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2019
, “
Benchmark of a Novel Aero-Elastic Simulation Code for Small Scale VAWT Analysis
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041014
.10.1115/1.4041519
6.
Balduzzi
,
F.
,
Marten
,
D.
,
Bianchini
,
A.
,
Drofelnik
,
J.
,
Ferrari
,
L.
,
Campobasso
,
M. S.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
,
Ferrara
,
G.
, and
Paschereit
,
C. O.
,
2018
, “
Three-Dimensional Aerodynamic Analysis of a Darrieus Wind Turbine Blade Using Computational Fluid Dynamics and Lifting Line Theory
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
022602
.10.1115/1.4037750
7.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Bachant
,
P.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2017
, “
Effectiveness of Two-Dimensional CFD Simulations for Darrieus VAWTs: A Combined Numerical and Experimental Assessment
,”
Energy Convers. Manage.
,
136
, pp.
318
328
.10.1016/j.enconman.2017.01.026
8.
Rezaeiha
,
A.
,
Montazeri
,
H.
, and
Blocken
,
B.
,
2018
, “
Towards Accurate CFD Simulations of Vertical Axis Wind Turbines at Different Tip Speed Ratios and Solidities: Guidelines for Azimuthal Increment, Domain Size and Convergence
,”
Energy Convers. Manage.
,
156
, pp.
301
316
.10.1016/j.enconman.2017.11.026
9.
Rezaeiha
,
A.
,
Montazeri
,
H.
, and
Blocken
,
B.
,
2018
, “
Characterization of Aerodynamic Performance of Vertical Axis Wind Turbines: Impact of Operational Parameters
,”
Energy Convers. Manage.
,
169
, pp.
45
77
.10.1016/j.enconman.2018.05.042
10.
Mendoza
,
V.
,
Bachant
,
P.
,
Ferreira
,
C.
, and
Goude
,
A.
,
2019
, “
Near-Wake Flow Simulation of a Vertical Axis Turbine Using an Actuator Line Model
,”
Wind Energy
,
22
(
2
), pp.
171
188
.10.1002/we.2277
11.
Shamsoddin
,
S.
, and
Porté-Agel
,
F.
,
2014
, “
Large Eddy Simulation of Vertical Axis Wind Turbine Wakes
,”
Energies
,
7
(
2
), pp.
890
912
.10.3390/en7020890
12.
Melani
,
P. F.
,
Schito
,
P.
, and
Persico
,
G.
,
2018
, “
Experimental Assessment of an ACL Simulation Tool for VAWTs
,”
Proceedings of the TUrbWind 2018 Colloquium
, Riva del Garda, Italy, Sept. 6–7, pp.
177
200
.
13.
Shen
,
W. Z.
,
Hansen
,
M.
, and
Sorensen
,
J.
,
2007
, “
Determination of Angle of Attack (AOA) for Rotating Blades
,”
Wind Energy, Proceedings of the Euromech Colloquium
, pp.
205
209
.
14.
Shen
,
W. Z.
,
Zhang
,
J. H.
, and
Sørensen
,
J. N.
,
2009
, “
The Actuator Surface Model: A New Navier–Stokes Based Model for Rotor Computations
,”
ASME J. Sol. Energy Eng.
,
131
(
1
), p.
011002
.10.1115/1.3027502
15.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Haack
,
L.
,
Bigalli
,
S.
,
Müller
,
B.
, and
Ferrara
,
G.
,
2019
, “
Development and Validation of a Hybrid Simulation Model for Darrieus Vertical-Axis Wind Turbines
,”
ASME
Paper No. GT2019-91218.10.1115/GT2019-91218
16.
Bachant
,
P.
,
Goude
,
A.
, and
Wosnik
,
M.
,
2018
, “
Actuator Line Modeling of Vertical-Axis Turbines
,” e-print arXiv:1605.01449 [Physics].
17.
Schito
,
P.
, and
Zasso
,
A.
,
2014
, “
Actuator Forces in CFD: RANS and LES Modeling in OpenFOAM
,”
J. Phys.: Conf. Ser.
,
524
, p.
012160
.10.1088/1742-6596/524/1/012160
18.
Shamsoddin
,
S.
, and
Porté-Agel
,
F.
,
2016
, “
A Large-Eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer
,”
Energies
,
9
(
5
), p.
366
.10.3390/en9050366
19.
Jost
,
E.
,
Klein
,
L.
,
Leipprand
,
H.
,
Lutz
,
T.
, and
Krämer
,
E.
,
2018
, “
Extracting the Angle of Attack on Rotor Blades From CFD Simulations
,”
Wind Energy
,
21
(
10
), pp.
807
822
.10.1002/we.2196
20.
Melani
,
P. F.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Bianchini
,
A.
,
2020
, “
How to Extract the Angle Attack on Airfoils in Cycloidal Motion From a Flow Field Solved With Computational Fluid Dynamics? Development and Verification of a Robust Computational Procedure
,”
Energy Convers. Manage.
,
223
, p.
113284
.10.1016/j.enconman.2020.113284
21.
Castelein
,
D.
,
Ragni
,
D.
,
Tescione
,
G.
,
Ferreira
,
C.
, and
Gaunaa
,
M.
,
2015
, “
Creating a Benchmark of Vertical Axis Wind Turbines in Dynamic Stall for Validating Numerical Models
,”
AIAA
Paper No. 2015-0723.10.2514/6.2015-0723
22.
Melani
,
P. F.
,
Balduzzi
,
F.
,
Brandetti
,
L.
,
Simão Ferreira
,
C. J.
, and
Bianchini
,
A.
,
2020
, “
An Experimental and Numerical Analysis of the Dynamic Variation of the Angle of Attack in a Vertical-Axis Wind Turbine
,” J. Phys.: Conf. Ser.,
1618, p. 052064.
23.
Tescione
,
G.
,
Ragni
,
D.
,
He
,
C.
,
Simão Ferreira
,
C. J.
, and
van Bussel
,
G. J. W.
,
2014
, “
Near Wake Flow Analysis of a Vertical Axis Wind Turbine by Stereoscopic Particle Image Velocimetry
,”
Renewable Energy
,
70
, pp.
47
61
.10.1016/j.renene.2014.02.042
24.
Pagamonci
,
L.
,
2020
, “
Development of an Actuator Line Code for the Simulation of Vertical Axis Wind Turbines
,” M.sc. thesis, Università Degli Studi di Firenze, Firenze, Italy.
25.
Troldborg
,
N.
,
2009
, “
Actuator Line Modeling of Wind Turbine Wakes
,” Ph.D thesis,
Technical University of Denmark
, Kongens Lyngby, Denmark.
26.
Martinez
,
L.
,
Leonardi
,
S.
,
Churchfield
,
M.
, and
Moriarty
,
P.
,
2012
, “
A Comparison of Actuator Disk and Actuator Line Wind Turbine Models and Best Practices for Their Use
,”
AIAA
Paper No. 2012-0900.10.2514/6.2012-0900
27.
Shives
,
M.
, and
Crawford
,
C.
,
2012
, “
Mesh and Load Distribution Requirements for Actuator Line CFD Simulations
,”
Wind Energy
,
16
(
8
), pp.
1183
1196
.10.1002/we.1546
28.
Martínez‐Tossas
,
L. A.
,
Churchfield
,
M. J.
, and
Meneveau
,
C.
,
2017
, “
Optimal Smoothing Length Scale for Actuator Line Models of Wind Turbine Blades Based on Gaussian Body Force Distribution
,”
Wind Energy
,
20
(
6
), pp.
1083
1096
.10.1002/we.2081
29.
Melani
,
P. F.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Bianchini
,
A.
,
2019
, “
An Annotated Database of Low Reynolds Aerodynamic Coefficients for the NACA0018 Airfoil
,”
AIP Conf. Proc.
,
2191
, p.
020110
.
30.
Drela
,
M.
,
1989
, “
XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils
,”
T. J. Mueller, eds., Low Reynolds Number Aerodynamics, Lecture Notes in Engineering, Vol. 54, Springer, Berlin, Heidelberg.
31.
Viterna
,
L. A.
, and
Janetzke
,
D. C.
,
1982
, “
Theoretical and Experimental Power From Large Horizontal-Axis Wind Turbines
,” NASA, Clevelan, OHA, Report No. DOE/NASA/20320-41.
32.
Marten
,
D.
,
Bianchini
,
A.
,
Pechlivanoglou
,
G.
,
Balduzzi
,
F.
,
Nayeri
,
C. N.
,
Ferrara
,
G.
,
Paschereit
,
C. O.
, and
Ferrari
,
L.
,
2016
, “
Effects of Airfoil's Polar Data in the Stall Region on the Estimation of Darrieus Wind Turbines Performance
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022606
.
33.
Migliore
,
P. G.
,
Wolfe
,
W. P.
, and
Fanucci
,
J. B.
,
1980
, “
Flow Curvature Effects on Darrieus Turbine Blade Aerodynamics
,”
J. Energy
,
4
(
2
), pp.
49
55
.10.2514/3.62459
34.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Dimensionless Numbers for the Assessment of Mesh and Timestep Requirements in CFD Simulations of Darrieus Wind Turbines
,”
Energy
,
97
, pp.
246
261
.10.1016/j.energy.2015.12.111
35.
Rainbird
,
J. M.
,
Bianchini
,
A.
,
Balduzzi
,
F.
,
Peiró
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
On the Influence of Virtual Camber Effect on Airfoil Polars for Use in Simulations of Darrieus Wind Turbines
,”
Energy Convers. Manage.
,
106
, pp.
373
384
.10.1016/j.enconman.2015.09.053
36.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Rainbird
,
J. M.
,
Peiro
,
J.
,
Michael
,
J.
,
Graham
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines—Part I: Flow Curvature Effects
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032602
.10.1115/1.4031269
37.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Critical Analysis of Dynamic Stall Models in Low-Order Simulation Models for Vertical-Axis Wind Turbines
,”
Energy Procedia
,
101
, pp.
488
495
.10.1016/j.egypro.2016.11.062
38.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
,
Persico
,
G.
,
Dossena
,
V.
, and
Ferrari
,
L.
,
2019
, “
A Critical Analysis on Low-Order Simulation Models for Darrieus Vawts: How Much Do They Pertain to the Real Flow?
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011018
.10.1115/1.4040851
39.
Massé
,
B.
,
1981
, “
Description de Deux Programmes D'ordinateur Pour Le Calcul Des Performances et Des Charges Aérodynamiques Pour Les Éoliennes à Axe Vertical
,” IREQ, Montreal, QC, Canada, Report No.
IREQ-2379.
40.
Gormont
,
R. E.
,
1973
,
A Mathematical Model of Unsteady Aerodynamics and Radial Flow for Application to Helicopter Rotors
,
Boeing Vertol
,
Philadelphia, PA
.
41.
Berg
,
D. E.
,
1983
, “
Improved Double-Multiple Streamtube Model for the Darrieus-Type Vertical Axis Wind Turbine
,” SANDIA National Laboratory, Albuquerque, NM, Report No. SAND-82-2479C.
42.
Hansen
,
K.
,
Kelso
,
R.
,
Choudhry
,
A.
, and
Arjomandi
,
M.
,
2014
, “
Laminar Separation Bubble Effect on the Lift Curve Slope of an Airfoil
,”
19th Australasian Fluid Mechanics Conference
, Melbourne, Australia, Dec.
8
11
.
43.
Boor
,
C. D.
,
1978
,
A Practical Guide to Splines
,
Springer-Verlag
,
New York
.
44.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Maleci
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Critical Issues in the CFD Simulation of Darrieus Wind Turbines
,”
Renewable Energy
,
85
, pp.
419
435
.10.1016/j.renene.2015.06.048
You do not currently have access to this content.