Abstract

The use of centrifugal compressors has been increasing tremendously in the last decade as they are a key component in the present energy scenario both in the modern internal combustion engine design and in advanced cycles and innovative plant layouts as fuel cell systems. Instability phenomena limit the operating range of the whole compressor system, especially during fast transients. The target is therefore to extend the minimum flow limit in order to improve the operability of each unit while avoiding compressor surge operation and guaranteeing safe operation. For this reason, it is necessary to develop a monitoring system capable of preventing surge and extending the operating range of these machines, their performance, and reliability to allow the integration with the other plant components. The experimental investigation carried out at the University of Genoa turbocharger test facility and presented in this work, consists of steady-state and transient measurements used to characterize and identify compressor behavior in correspondence of surge inception conditions to determine different techniques which could represent surge precursors. The data analysis concentrates on pressure and vibro-acoustic signals by applying different signal processing techniques in the time and frequency domain to classify compressor operation as stable or unstable. The cross correlation function and wavelet analysis have been identified as techniques to define a precursor able to detect incipient surge conditions. Through cross correlation function analysis, it has been possible to identify the presence of propagation phenomena in the system and to evaluate how these events become more significant near an unstable low-mass flow rate condition. At low mass flow rate condition, spikes of significant amplitude are well detectable in the cross correlation function indicating the rise of significant random content in the system responses associated with the rise of incipient surge condition. Additionally, the continuous wavelet transform has been applied to operational signals to show how their time-dependent spectral structure responses can highlight the rise of unstable phenomena, not easily identifiable with traditional signal processing techniques. Exploiting its features in terms of good frequency and time resolution allowed us to identify different contents in system responses regarding phenomena that take place close to surge line and were able to detect their nature in conditions very close to deep surge ones (e.g., rotating stall with its intermitting characteristic nature). Moreover, system response was studied in high frequency range and through a demodulation technique, it was found how blade passes frequency energy content change interacting with rotating stall inception, moving close to surge line. The obtained results provide an interesting diagnostic and predictive solution to detect compressor instabilities at low mass flow rate operating conditions and to prevent compressor fails.

References

1.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors. Part I: Theoretical Compression System Model
,”
ASME J. Eng. Power
,
98
(
2
), pp.
190
198
.10.1115/1.3446138
2.
Biliotti
,
D.
,
Bianchini
,
A.
,
Vannini
,
G.
,
Belardini
,
E.
,
Giachi
,
M.
,
Tapinassi
,
L.
,
Ferrari
,
L.
, and
Ferrara
,
G.
,
2015
, “
Analysis of the Rotor Dynamic Response of a Centrifugal Compressor Subject to Aerodynamic Loads Due to Rotating Stall
,”
ASME J. Turbomach.
,
137
(
2
), p. 021002.10.1115/1.4028246
3.
Munari
,
E.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Suman
,
A.
, “
Experimental Investigation of Stall and Surge in a Multistage Compressor
,”
ASME
Paper No. GT2016-57168.10.1115/GT2016-57168
4.
Kabral
,
R.
, and
Åbom
,
M.
,
2018
, “
Investigation of Turbocharger Compressor Surge Inception by Means of an Acoustic Two-Port Model
,”
J. Sound Vib.
,
412
, pp.
270
e286
.10.1016/j.jsv.2017.10.003
5.
Marelli
,
S.
,
Misley
,
A.
,
Taylor
,
A.
,
Silviestri
,
P.
,
Capobianco
,
M.
, and
Canova
,
M.
,
2018
, “
Experimental Investigation on Surge Phenomena in an Automotive Turbocharger Compressor
,”
SAE
Paper No. 2018-01-0976.10.4271/2018-01-0976
6.
Ferrari
,
M. L.
,
Silvestri
,
P.
,
Pascenti
,
M.
,
Reggio
,
F.
, and
Massardo
,
A. F.
,
2018
, “
Experimental Dynamic Analysis on a T100 Microturbine Connected With Different Volume Sizes
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
021701
.10.1115/1.4037754
7.
Reggio
,
F.
,
Ferrari
,
M. L.
,
Silvestri
,
P.
, and
Massardo
,
A. F.
,
2019
, “
Vibrational Analysis for Surge Precursor Definition in Gas Turbines
,”
Meccanica
,
54
(
8
), pp.
1257
1278
.10.1007/s11012-019-01016-0
8.
Zhenzhong
,
S.
,
Wangzhi
,
Z.
, and
Xinqian
,
Z.
,
2018
, “
Instability Detection of Centrifugal Compressors by Means of Acoustic Measurements
,”
Aerosp. Sci. Technol.
,
82–83
, pp.
628
635.
10.1016/j.ast.2018.09.006
9.
Dehner
,
R.
,
Figurella
,
N.
,
Selamet
,
A.
,
Keller
,
P.
,
Becker
,
M.
,
Tallio
,
K.
,
Miazgowicz
,
K.
, and
Wade
,
R.
,
2013
, “
Instabilities at the Low-Flow Range of a Turbocharger Compressor
,”
SAE Int. J. Eng.
,
6
(
2
), pp.
1356
1367
.10.4271/2013-01-1886
10.
Aretakis
,
N.
,
Mathioudakis
,
K.
,
Kefalakis
,
M.
, and
Papailiou
,
K.
,
2004
, “
Turbocharger Unstable Operation Diagnosis Using Vibroacoustic Measurements
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
840
847
.10.1115/1.1771686
11.
Munari
,
E.
,
D'Elia
,
G.
,
Morini
,
M.
,
Mucchi
,
E.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2018
, “
Experimental Investigation of Vibrational and Acoustic Phenomena for Detecting the Stall and Surge of a Multistage Compressor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
092605
.10.1115/1.4038765
12.
Guillou
,
E.
,
Gancedo
,
M.
, and
Gutmark
,
E.
,
2016
, “
Experimental Investigation of Flow Instability in a Turbocharger Ported Shroud Compressor
,”
ASME J. Turbomach.
,
138
(
6
), p.
061002
.10.1115/1.4032360
13.
Marelli
,
S.
,
Silvestri
,
P.
,
Usai
,
V.
, and
Capobianco
,
M.
,
2019
, “
Incipient Surge Detection in Automotive Turbocharger Compressors
,”
SAE
Paper No. 2019-24-0186.10.4271/2019-24-0186
14.
Gancedo
,
M.
,
Guillou
,
E.
,
Gutmark
,
E.
, and
Mohamed
,
A.
,
2012
, “
Dynamic Features and Their Propagation in a Centrifugal Compressor Housing With Ported Shroud
,”
SAE
Paper No. 2012-01-0706.10.4271/2012-01-0706
15.
McDougall
,
N. M.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
1990
, “
Stall Inception in Axial Compressors
,”
ASME J. Turbomach.
,
112
(
1
), pp.
116
125
.10.1115/1.2927406
16.
Marelli
,
S.
, and
Usai
,
V.
,
2020
, “
Experimental Evaluation of the Performance of an Automotive Electric Supercharger
,”
SAE
Paper No. 2020-37-0008.10.4271/2020-37-0008
17.
Marelli
,
S.
,
Marmorato
,
G.
,
Capobianco
,
M.
, and
Rinaldi
,
A.
,
2015
, “
Heat Transfer Effects on Performance Map of a Turbocharger Compressor for Automotive Application
,”
SAE
Paper No. 2015-01-1287.10.4271/2015-01-1287
18.
Oppenheim
,
A. V.
, and
Schafer
,
R. W.
,
1999
,
Discrete-Time Signal Processing
,
Prentice Hall
,
Upper Saddle River, NJ
.
19.
Dhingra
,
M.
,
Neumeier
,
Y.
,
Prasad
,
J. V. R.
,
Breeze-Stringfellow
,
A.
,
Shin
,
H.-W.
, and
Szucs
,
P. N.
,
2007
, “
A Stochastic Model for a Compressor Stability Measure
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), pp.
730
737
.10.1115/1.2718231
20.
Liu
,
Y.
,
Dhingra
,
M.
, and
Prasad
,
J. V. R.
,
2012
, “
Correlation Measure-Based Stall Margin Estimation for a Single-Stage Axial Compressor
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
011603
.10.1115/1.4004177
21.
Lim
,
B. J.
,
Park
,
T. C.
, and
Kang
,
Y. S.
,
2018
, “
Stall Warning Using the Rotor Tip Pressure in a Transonic Axial Compressor With Circumferential Grooves
,”
ASME
Paper No. GT2018-76301.10.1115/GT2018-76301
22.
Chui
,
C. K.
,
1994
,
An Introduction to Wavelets
,
Academic Press
, San Diego, CA.
23.
Walnut
,
D. F.
,
2002
,
An Introduction to Wavelet Analysis
,
Birkhäuser, Boston, MA
.
24.
Liao
,
S.
, and
Chen
,
J.
,
1996
, “
Time-Frequency Analysis of Compressor Rotating Stall by Means of Wavelet Transform
,”
ASME
Paper No. 96-GT-057.10.1115/96-GT-057
25.
Lin
,
F.
,
Li
,
M.
, and
Chen
,
J. Y.
,
2006
, “
Long-to-Short Length-Scale Transition: A Stall Inception Phenomenon in an Axial Compressor With Inlet Distortion
,”
ASME J. Turbomach.
,
128
(
1
), pp.
130
140
.10.1115/1.2098808
26.
Zhang
,
H.
,
Yu
,
X.
,
Liu
,
B.
,
Wu
,
Y.
, and
Li
,
Y.
,
2016
, “
Using Wavelets to Study Spike-Type Compressor Rotating Stall Inception
,”
Aerosp. Sci. Technol.
,
58
, pp.
467
479
.10.1016/j.ast.2016.09.006
27.
Liu
,
Y.
,
Li
,
J.
,
Du
,
J.
,
Li
,
F.
, and
Zhang
,
H.
,
2019
, “
Application of Fast Wavelet Analysis on Early Stall Warning in Axial Compressors
,”
J. Therm. Sci.
,
28
(
5
), pp.
837
849
.10.1007/s11630-019-1207-4
28.
Niccolini Marmont Du Haut Champ
,
C. A.
,
Silvestri
,
P.
,
Ferrari
,
M. L.
, and
Massardo
,
A. F.
,
2020
, “
Signal Processing Techniques to Detect Centrifugal Compressors Instabilities in Large Volume Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
142
(
12
), p.
121002
.10.1115/1.4048910
29.
Silvestri
,
P.
,
Ferrari
,
M. L.
, and
Massardo
,
A. F.
, and
Niccolini Marmont Du Haut Champ
,
C. A.
,
2021
, “
Incipient Surge Detection in Large Volume Energy Systems Based on Wigner-Ville Distribution Evaluated on Vibration Signals
,”
ASME J. Eng. Gas Turbines Power
, 143(7), p. 071014.10.1115/1.4049855
30.
Randall
,
R. B.
,
1982
, “
A New Method of Modelling Gear Faults
,”
ASME J. Mech. Des.
,
104
(
2
), pp.
259
267
.10.1115/1.3256334
31.
Laval
,
X.
,
Mailhes
,
C.
,
Martin
,
N.
,
Bellemain
,
P.
, and
Pachaud
,
C.
,
2021
, “
Amplitude and Phase Interaction in Hilbert Demodulation of Vibration Signals: Natural Gear Wear Modeling and Time Tracking for Condition Monitoring
,”
Mech. Syst. Signal Process.
,
150
, p.
107321
.10.1016/j.ymssp.2020.107321
32.
Boczar
,
T.
,
Zmarzły
,
D.
,
Kozioł
,
M.
, and
Wotzka
,
D.
,
2020
, “
Application of Correlation Analysis for Assessment of Infrasound Signals Emission by Wind Turbines
,”
Sensors (Switzerland)
,
20
(
23
), pp.
6891
6824
.10.3390/s20236891
You do not currently have access to this content.