Abstract

The effects of premixedness degrees on combustion instabilities of separated dual-swirl flames have been investigated experimentally in the Beihang Axial Swirler Independently Stratified (BASIS) burner. The degree of premixedness is modulated by the fuel split between two injection positions in the outer stream. In the spectra of pressure oscillations, both the frequency and amplitude are positively correlated with fuel split ratios under partially premixed conditions, and the mode transition between perfectly and partially premixed conditions has been observed. The location of perfectly premixed flames shows no obvious variation at different phase angles, only with a slightly wrinkling of the flame surface along the shear layer. Under partially premixed conditions, however, the flame is found to feature a large-scale periodic convective motion, accompanied by the obvious variation of heat releases due to the equivalence ratio oscillations. The local Rayleigh index map compares the thermoacoustic driving factors under perfectly and partially premixed conditions. The development of above convective motions under partially premixed conditions is explained by combining the variations of pressure oscillations and heat releases. An analysis of the thermoacoustic network and convective path is applied to explain the cause of the mode transition. The results show that the appearance of equivalence ratio oscillations and the elongated convective path under partially premixed conditions brings a longer delay time of the flame response, which could be the reason for the mode transition.

References

1.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
2.
Ducruix
,
S.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
Combustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms
,”
J. Propul. Power
,
19
(
5
), pp.
722
734
.10.2514/2.6182
3.
Han
,
X.
,
Hui
,
X.
,
Zhang
,
C.
,
Lin
,
Y.
,
He
,
P.
, and
Sung
,
C.-J.
,
2017
, “
Combustion Instabilities in a Lean Premixed Pre-Vaporized Combustor at High-Pressure High-Temperature
,”
ASME Paper No. GT2017-65190
.10.1115/GT2017-65190
4.
Matsuyama
,
R.
,
Kobayashi
,
M.
,
Ogata
,
H.
,
Horikawa
,
A.
, and
Kinoshita
,
Y.
,
2012
, “
Development of a Lean Staged Combustor for Small Aero-Engines
,”
ASME Paper No. GT2012-68272
.10.1115/GT2012-68272
5.
Mongia
,
H.
,
2003
, “
Taps: A Fourth Generation Propulsion Combustor Technology for Low Emissions
,”
AIAA Paper No. 2003-2657
.10.2514/6.2003-2657
6.
Dhanuka
,
S. K.
,
Temme
,
J. E.
,
Driscoll
,
J. F.
, and
Mongia
,
H. C.
,
2009
, “
Vortex-Shedding and Mixing Layer Effects on Periodic Flashback in a Lean Premixed Prevaporized Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2901
2908
.10.1016/j.proci.2008.06.155
7.
Dhanuka
,
S. K.
,
Temme
,
J. E.
, and
Driscoll
,
J.
,
2011
, “
Unsteady Aspects of Lean Premixed Prevaporized Gas Turbine Combustors: Flame-Flame Interactions
,”
J. Propul. Power
,
27
(
3
), pp.
631
641
.10.2514/1.B34001
8.
Masri
,
A.
,
2015
, “
Partial Premixing and Stratification in Turbulent Flames
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1115
1136
.10.1016/j.proci.2014.08.032
9.
Lipatnikov
,
A. N.
,
2017
, “
Stratified Turbulent Flames: Recent Advances in Understanding the Influence of Mixture Inhomogeneities on Premixed Combustion and Modeling Challenges
,”
Prog. Energy Combust. Sci.
,
62
, pp.
87
132
.10.1016/j.pecs.2017.05.001
10.
Dhanuka
,
S. K.
,
Temme
,
J. E.
, and
Driscoll
,
J. F.
,
2011
, “
Lean-Limit Combustion Instabilities of a Lean Premixed Prevaporized Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2961
2966
.10.1016/j.proci.2010.07.011
11.
Temme
,
J. E.
,
Allison
,
P. M.
, and
Driscoll
,
J. F.
,
2014
, “
Combustion Instability of a Lean Premixed Prevaporized Gas Turbine Combustor Studied Using Phase-Averaged PIV
,”
Combust. Flame
,
161
(
4
), pp.
958
970
.10.1016/j.combustflame.2013.09.021
12.
Kim
,
K. T.
, and
Hochgreb
,
S.
,
2012
, “
Effects of Nonuniform Reactant Stoichiometry on Thermoacoustic Instability in a Lean-Premixed Gas Turbine Combustor
,”
Combust. Sci. Technol.
,
184
(
5
), pp.
608
628
.10.1080/00102202.2011.652788
13.
Renaud
,
A.
,
Ducruix
,
S.
, and
Zimmer
,
L.
,
2017
, “
Bistable Behaviour and Thermo-Acoustic Instability Triggering in a Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3899
3906
.10.1016/j.proci.2016.08.007
14.
Kim
,
K. T.
, and
Hochgreb
,
S.
,
2011
, “
The Nonlinear Heat Release Response of Stratified Lean-Premixed Flames to Acoustic Velocity Oscillations
,”
Combust. Flame
,
158
(
12
), pp.
2482
2499
.10.1016/j.combustflame.2011.05.016
15.
Renaud
,
A.
,
Ducruix
,
S.
,
Scouflaire
,
P.
, and
Zimmer
,
L.
,
2015
, “
Flame Shape Transition in a Swirl Stabilised Liquid Fueled Burner
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3365
3372
.10.1016/j.proci.2014.07.012
16.
Arndt
,
C. M.
,
Severin
,
M.
,
Dem
,
C.
,
Stöhr
,
M.
,
Steinberg
,
A. M.
, and
Meier
,
W.
,
2015
, “
Experimental Analysis of Thermo-Acoustic Instabilities in a Generic Gas Turbine Combustor by Phase-Correlated PIV, Chemiluminescence, and Laser Raman Scattering Measurements
,”
Exp. Fluids
,
56
(
4
), p.
69
.10.1007/s00348-015-1929-3
17.
Li
,
L.
,
Lin
,
Y.
,
Fu
,
Z.
, and
Zhang
,
C.
,
2016
, “
Emission Characteristics of a Model Combustor for Aero Gas Turbine Application
,”
Exp. Therm. Fluid Sci.
,
72
, pp.
235
248
.10.1016/j.expthermflusci.2015.11.012
18.
Tachibana
,
S.
,
Kanai
,
K.
,
Yoshida
,
S.
,
Suzuki
,
K.
, and
Sato
,
T.
,
2015
, “
Combined Effect of Spatial and Temporal Variations of Equivalence Ratio on Combustion Instability in a Low-Swirl Combustor
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3299
3308
.10.1016/j.proci.2014.07.024
19.
Han
,
X.
,
Laera
,
D.
,
Morgans
,
A.
,
Sung
,
C.
,
Hui
,
X.
, and
Lin
,
Y.
,
2019
, “
Flame Macrostructures and Thermoacoustic Instabilities in Stratified Swirling Flames
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5377
5384
.10.1016/j.proci.2018.06.147
20.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, UK
.
21.
Schuermans
,
B.
,
Guethe
,
F.
, and
Mohr
,
W.
,
2010
, “
Optical Transfer Function Measurements for Technically Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
132
(
8
), p. 0
81501
.10.1115/1.3124663
22.
Kim
,
K. T.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
Reconstruction of Heat Release Response of Partially Premixed Flames
,”
Combust. Sci. Technol.
,
183
(
2
), pp.
122
137
.10.1080/00102202.2010.503205
23.
Boxx
,
I.
,
Stöhr
,
M.
,
Carter
,
C.
, and
Meier
,
W.
,
2010
, “
Temporally Resolved Planar Measurements of Transient Phenomena in a Partially Pre-Mixed Swirl Flame in a Gas Turbine Model Combustor
,”
Combust. Flame
,
157
(
8
), pp.
1510
1525
.10.1016/j.combustflame.2009.12.015
24.
Stöhr
,
M.
,
Yin
,
Z.
, and
Meier
,
W.
,
2017
, “
Interaction Between Velocity Fluctuations and Equivalence Ratio Fluctuations During Thermoacoustic Oscillations in a Partially Premixed Swirl Combustor
,”
Proc. Combust. Inst
,
36
(
3
), pp.
3907
3915
.10.1016/j.proci.2016.06.084
25.
Kypraiou
,
A.
,
Allison
,
P.
,
Giusti
,
A.
, and
Mastorakos
,
E.
,
2018
, “
Response of Flames With Different Degrees of Premixedness to Acoustic Oscillations
,”
Combust. Sci. Technol.
,
190
(
8
), pp.
1426
1441
.10.1080/00102202.2018.1452125
26.
Ćosić
,
B.
,
Terhaar
,
S.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
,
2015
, “
Response of a Swirl-Stabilized Flame to Simultaneous Perturbations in Equivalence Ratio and Velocity at High Oscillation Amplitudes
,”
Combust. Flame
,
162
(
4
), pp.
1046
1062
.10.1016/j.combustflame.2014.09.025
27.
Han
,
Z.
,
Balusamy
,
S.
, and
Hochgreb
,
S.
,
2015
, “
Spatial Analysis on Forced Heat Release Response of Turbulent Stratified Flames
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
061504
.10.1115/1.4029056
28.
Han
,
Z.
, and
Hochgreb
,
S.
,
2015
, “
The Response of Stratified Swirling Flames to Acoustic Forcing: Experiments and Comparison to Model
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3309
3315
.10.1016/j.proci.2014.05.047
29.
Franzelli
,
B.
,
Riber
,
E.
,
Gicquel
,
L. Y.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulation of Combustion Instabilities in a Lean Partially Premixed Swirled Flame
,”
Combust. Flame
,
159
(
2
), pp.
621
637
.10.1016/j.combustflame.2011.08.004
30.
Huber
,
A.
, and
Polifke
,
W.
,
2009
, “
Dynamics of Practical Premixed Flames—Part I: Model Structure and Identification
,”
Int. J. Spray Combust.
,
1
(
2
), pp.
199
228
.10.1260/175682709788707431
31.
Huber
,
A.
, and
Polifke
,
W.
,
2009
, “
Dynamics of Practical Premixed Flames—Part II: Identification and Interpretation of CFD Data
,”
Int. J. Spray Combust.
,
1
(
2
), pp.
229
249
.10.1260/175682709788707440
32.
Lourier
,
J.-M.
,
Stöhr
,
M.
,
Noll
,
B.
,
Werner
,
S.
, and
Fiolitakis
,
A.
,
2017
, “
Scale Adaptive Simulation of a Thermoacoustic Instability in a Partially Premixed Lean Swirl Combustor
,”
Combust. Flame
,
183
, pp.
343
357
.10.1016/j.combustflame.2017.02.024
33.
Lieuwen
,
T.
, and
Zinn
,
B. T.
,
1998
, “
The Role of Equivalence Ratio Oscillations in Driving Combustion Instabilities in Low NOx Gas Turbines
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
1809
1816
.10.1016/S0082-0784(98)80022-2
34.
Shreekrishna
,
Hemchandra
,
S.
, and
Lieuwen
,
T.
,
2010
, “
Premixed Flame Response to Equivalence Ratio Perturbations
,”
Combust. Theory Model.
,
14
(
5
), pp.
681
714
.10.1080/13647830.2010.502247
35.
Cho
,
J. H.
, and
Lieuwen
,
T.
,
2005
, “
Laminar Premixed Flame Response to Equivalence Ratio Oscillations
,”
Combust. Flame
,
140
(
1–2
), pp.
116
129
.10.1016/j.combustflame.2004.10.008
36.
Auer
,
M.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2005
, “
Influence of the Interaction of Equivalence Ratio and Mass Flow Fluctuations on Flame Dynamics
,”
ASME Paper No. GT2005-68373
.10.1115/GT2005-68373
37.
Han
,
X.
,
Laera
,
D.
,
Morgans
,
A. S.
,
Lin
,
Y.
, and
Sung
,
C.-J.
,
2018
, “
The Effect of Stratification Ratio on the Macrostructure of Stratified Swirl Flames: Experimental and Numerical Study
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121004
.10.1115/1.4040735
38.
Lefebvre
,
A. H.
,
1998
,
Gas Turbine Combustion
,
CRC Press
,
Boca Raton, FL
.
39.
Hardalupas
,
Y.
, and
Orain
,
M.
,
2004
, “
Local Measurements of the Time-Dependent Heat Release Rate and Equivalence Ratio Using Chemiluminescent Emission From a Flame
,”
Combust. Flame
,
139
(
3
), pp.
188
207
.10.1016/j.combustflame.2004.08.003
40.
Abarbanel
,
H. D.
,
Brown
,
R.
,
Sidorowich
,
J. J.
, and
Tsimring
,
L. S.
,
1993
, “
The Analysis of Observed Chaotic Data in Physical Systems
,”
Rev. Mod. Phys.
,
65
(
4
), pp.
1331
1392
.10.1103/RevModPhys.65.1331
41.
Dasch
,
C. J.
,
1992
, “
One-Dimensional Tomography: A Comparison of Abel, Onion-Peeling, and Filtered Backprojection Methods
,”
Appl. Opt.
,
31
(
8
), pp.
1146
1152
.10.1364/AO.31.001146
42.
Meier
,
W.
,
Weigand
,
P.
,
Duan
,
X.
, and
Giezendanner-Thoben
,
R.
,
2007
, “
Detailed Characterization of the Dynamics of Thermoacoustic Pulsations in a Lean Premixed Swirl Flame
,”
Combust. Flame
,
150
(
1–2
), pp.
2
26
.10.1016/j.combustflame.2007.04.002
43.
Rayleigh
,
J. W. S.
,
1945
,
The Theory of Sound
,
Dover
,
Downers Grove, IL
.
44.
Yoon
,
J.
,
Joo
,
S.
,
Kim
,
J.
,
Lee
,
M. C.
,
Lee
,
J. G.
, and
Yoon
,
Y.
,
2017
, “
Effects of Convection Time on the High Harmonic Combustion Instability in a Partially Premixed Combustor
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3753
3761
.10.1016/j.proci.2016.06.105
45.
Li
,
J.
,
Yang
,
D.
,
Luzzato
,
C.
, and
Morgans
,
A. S.
,
2015
, “
Open Source Combustion Instability Low Order Simulator (Oscilos–Long)
,”
Technical Report
.http://www.oscilos.com/download/OSCILOS_Long_Tech_report.pdf
46.
Han
,
X.
,
Li
,
J.
, and
Morgans
,
A. S.
,
2015
, “
Prediction of Combustion Instability Limit Cycle Oscillations by Combining Flame Describing Function Simulations With a Thermoacoustic Network Model
,”
Combust. Flame
,
162
(
10
), pp.
3632
3647
.10.1016/j.combustflame.2015.06.020
47.
Crocco
,
L.
,
1951
, “
Aspects of Combustion Stability in Liquid Propellant Rocket Motors—Part I: Fundamentals. Low Frequency Instability With Monopropellants
,”
J. Am. Rocket Soc.
,
21
(
6
), pp.
163
178
.10.2514/8.4393
48.
Polifke
,
W.
,
2004
, “
Combustion Instabilities
,”
Adv. Aeronaut. Appl.
, Von Karman Institute for Fluid Dynamics, Lecture Series, Sint-Genesius-Rode, Belgium.https://www.researchgate.net/publication/255738492_Combustion_Instabilities
49.
Åbom
,
M.
, and
Bodén
,
H.
,
1988
, “
Error Analysis of Two-Microphone Measurements in Ducts With Flow
,”
J. Acoust. Soc. Am.
,
83
(
6
), pp.
2429
2438
.10.1121/1.396322
You do not currently have access to this content.