Abstract

In this paper, a validation approach for a turbine blade component test with frictional contacts is presented. The investigated system is derived from a high cycle fatigue test setup, where a turbine blade is base-excited in the clamped blade foot. The setup has been extended by laser scanning vibrometry, a force measurement platform, and feedback-controllers for both force level and phase. At first, a conventional validation of a linearized model of the system is performed at low amplitudes to ensure the correct modal basis for model reduction. After that, the nonlinear behavior around the fundamental mode is analyzed in detail. Frequency responses for different excitation levels and backbone curves are measured and assessed regarding repeatability and robustness of the measurement chain. Among other effects, overhanging branches of the frequency response were encountered. Nonlinear, amplitude-dependent modal frequencies and damping ratios are identified from the backbone curves. These data form the validation basis for a reduced-order model of the system considering nonlinear friction in the blade foot. The correlation of measurement and simulation is investigated and advantages and shortcomings of the different validation metrics are discussed.

References

1.
Gaul
,
L.
, and
Nitsche
,
R.
,
2001
, “
The Role of Friction in Mechanical Joints
,”
ASME Appl. Mech. Rev.
,
54
(
2
), p.
93
.10.1115/1.3097294
2.
Krack
,
M.
,
Salles
,
L.
, and
Thouverez
,
F.
,
2017
, “
Vibration Prediction of Bladed Disks Coupled by Friction Joints
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
589
636
.10.1007/s11831-016-9183-2
3.
Pesaresi
,
L.
,
Salles
,
L.
,
Jones
,
A.
,
Green
,
J.
, and
Schwingshackl
,
C.
,
2017
, “
Modelling the Nonlinear Behaviour of an Underplatform Damper Test Rig for Turbine Applications
,”
Mech. Syst. Signal Process.
,
85
, pp.
662
679
.10.1016/j.ymssp.2016.09.007
4.
Peter
,
S.
,
Scheel
,
M.
,
Krack
,
M.
, and
Leine
,
R. I.
,
2018
, “
Synthesis of Nonlinear Frequency Responses With Experimentally Extracted Nonlinear Modes
,”
Mech. Syst. Signal Process.
,
101
, pp.
498
515
.10.1016/j.ymssp.2017.09.014
5.
Koh
,
K.-H. H.
,
Griffin
,
J. H.
,
Filippi
,
S.
, and
Akay
,
A.
,
2005
, “
Characterization of Turbine Blade Friction Dampers
,”
ASME J. Eng. Gas Turbines Power
,
127
(
4
), pp.
856
862
.10.1115/1.1926312
6.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J. C.
, and
Vakakis
,
A. F.
,
2009
, “
Nonlinear Normal Modes, Part I: A Useful Framework for the Structural Dynamicist
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
170
194
.10.1016/j.ymssp.2008.04.002
7.
Krack
,
M.
,
2015
, “
Nonlinear Modal Analysis of Nonconservative Systems: Extension of the Periodic Motion Concept
,”
Comput. Struct.
,
154
, pp.
59
71
.10.1016/j.compstruc.2015.03.008
8.
Krack
,
M.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2013
, “
A Method for Nonlinear Modal Analysis and Synthesis: Application to Harmonically Forced and Self-Excited Mechanical Systems
,”
J. Sound Vib.
,
332
(
25
), pp.
6798
6814
.10.1016/j.jsv.2013.08.009
9.
Peeters
,
M.
,
Kerschen
,
G.
, and
Golinval
,
J. C.
,
2011
, “
Dynamic Testing of Nonlinear Vibrating Structures Using Nonlinear Normal Modes
,”
J. Sound Vib.
,
330
(
3
), pp.
486
509
.10.1016/j.jsv.2010.08.028
10.
Peter
,
S.
, and
Leine
,
R. I.
,
2017
, “
Excitation Power Quantities in Phase Resonance Testing of Nonlinear Systems With Phase-Locked-Loop Excitation
,”
Mech. Syst. Signal Process.
,
96
, pp.
139
158
.10.1016/j.ymssp.2017.04.011
11.
Denis
,
V.
,
Jossic
,
M.
,
Giraud-Audine
,
C.
,
Chomette
,
B.
,
Renault
,
A.
, and
Thomas
,
O.
,
2018
, “
Identification of Nonlinear Modes Using Phase-Locked-Loop Experimental Continuation and Normal Form
,”
Mech. Syst. Signal Process.
,
106
, pp.
430
452
.10.1016/j.ymssp.2018.01.014
12.
Scheel
,
M.
,
Peter
,
S.
,
Leine
,
R. I.
, and
Krack
,
M.
,
2018
, “
A Phase Resonance Approach for Modal Testing of Structures With Nonlinear Dissipation
,”
J. Sound Vib.
,
435
, pp.
56
73
.10.1016/j.jsv.2018.07.010
13.
Verein deutscher Ingenieur,
2015
, “
Systematic Calculation of Highly Stressed Bolted Joints: Joints With One Cylindrical Bolt
,” Verein deutscher Ingenieur, Beuth, Berlin, Standard No. VDI 2230 Part 1.
14.
Allemang
,
R. J.
,
2003
, “
The Modal Assurance Criterion–Twenty Years of Use and Abuse
,”
Sound Vib.
,
37
(
8
), pp.
14
23
.http://www.sandv.com/downloads/0308alle.pdf
15.
Fotsch
,
D. W.
,
2001
, “
Development of Valid FE Models for Structural Dynamic Design
,” Ph.D. thesis, Imperial College, University of London, London.
16.
Hartung
,
A.
,
Hackenberg
,
H.-P.
,
Krack
,
M.
,
Gross
,
J.
,
Heinze
,
T.
, and
Panning-von Scheidt
,
L.
,
2019
, “
Rig and Engine Validation of the Nonlinear Forced Response Analysis Performed by the Tool OrAgL
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021019
.10.1115/1.4041160
You do not currently have access to this content.