Abstract

Blade-mounted strain gages are vital during rig and engine development to ensure safe engine operation. However, they also enable a change in dynamics of integrally bladed rotors (IBRs). State-of-the-art IBR dynamic response predictions are accomplished using as-manufactured models (AMMs) generated via optical topography measurements and mesh morphing. Two AMM finite element models (FEMs) are created of a 20-bladed IBR. One FEM has no strain gages present, where the second FEM includes strain gages on six blades. Traditionally, strain gages and lead wires are treated as the same material property as the IBR itself. It will be shown that the inclusion of strain gages in AMM's using this method changes the IBR's predicted mistuning. An alternative AMM approach is developed that changes the material properties of the finite elements attributed to the strain gages. The predicted mistuning for each AMM is accomplished using the fundamental mistuning model identification (FMM ID), where the predicted mistuning will be compared to both traveling wave excitation (TWE) experiments and a rotating, single stage compressor rig. Findings show mistuning predictions of the nonstrain gaged AMM compare far better to the experiments compared to the inclusion of the strain gages in the AMM. Additionally, altering material properties of the strain gages in the AMM improve mistuning prediction compared to treating the strain gages as the parent IBR material. Therefore, AMM should be acquired using clean, nonstrain gaged rotors or the material properties of strain gaged elements need to be altered to more accurately model the component.

References

1.
Zaleski
,
A.
,
2017
, “
At GE Aviation, Digital Transformation Hinges on Digital Twins
,” accessed Nov. 20, 2019, www.ca.com/us/modern-software-factory/content/at-ge-aviation-digital-transformation-hinges-on-digital-twins.html
2.
Kaszynski
,
A.
,
Beck
,
J.
, and
Brown
,
J.
,
2013
, “
Uncertainties of an Automated Optical 3D Geometry Measurement, Modeling, and Analysis Process for Mistuned Integrally Bladed Rotor Reverse Engineering
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102504
.10.1115/1.4025000
3.
Maywald
,
T.
,
Backhaus
,
T.
,
Schrape
,
S.
, and
Kuhhorn
,
A.
,
2017
, “
Geometric Model Update of Blisks and Its Experimental Validation for a Wide Frequency Range
,”
ASME
Paper No. GT2017-63446.10.1115/GT2017-63446
4.
Glaessgen
,
E.
, and
Stargel
,
D.
,
2012
, “
The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles
,”
53rd Structures, Structural Dynamics, and Materials Conference
, Honolulu, HI, Apr.
23
26
.10.2514/6.2012-1818
5.
Hodges
,
C.
,
1982
, “
Confinement of Vibration by Structural Irregularity
,”
J. Sound Vib.
,
82
(
3
), pp.
411
424
.10.1016/S0022-460X(82)80022-9
6.
Bartsch
,
T.
,
2000
, “
High Cycle Fatigue Science and Technology Program
,” Air Force Research Laboratory, Wright Patterson Air Force Base, OH, Report No. AFRL-PR-WP-TR-2000-2004.
7.
Cowles
,
B.
,
1996
, “
High Cycle Fatigue in Aircraft Gas Turbines—An Industry Perspective
,”
Int. J. Fract.
,
80
(
2–3
), pp.
147
163
.10.1007/BF00012667
8.
Nicholas
,
T.
,
1999
, “
Critical Issues in High Cycle Fatigue
,”
Int. J. Fract.
,
21
, pp.
221
231
.10.1016/S0142-1123(99)00074-2
9.
Kaszynski
,
A.
, and
Brown
,
J.
,
2015
, “
Accurate Blade Tip Timing Limits Through Geometry Mistuning Modeling
,”
ASME
Paper No. GT2015-43192.10.1115/GT2015-43192
10.
Gillaugh
,
D.
,
Kaszynski
,
A.
,
Brown
,
J.
,
Johnston
,
D.
, and
Slater
,
J.
,
2017
, “
Accurate Strain Gage Limits Through Geometry Mistuning Modeling
,”
J. Propul. Power
,
34
(
6
), p.
49
.10.2514/1.B36849
11.
Schnell
,
R.
,
Lengyel-Kampmann
,
T.
, and
Nicke
,
E.
,
2014
, “
On the Impact of Geometric Variability on Fan Aerodynamic Performance, Unsteady Blade Row Interaction, and Its Mechanical Characteristics
,”
ASME J. Turbomach.
,
136
(
9
), p.
091005
.10.1115/1.4027218
12.
Clark
,
J.
,
Beck
,
J.
,
Kaszynski
,
A.
,
Still
,
A.
, and
Ni
,
R.
,
2017
, “
The Effect of Manufacturing Variations on Unsteady Interaction in a Transonic Turbine
,”
ASME
Paper No. GT2017-64075.10.1115/GT2017-64075
13.
Gillaugh
,
D.
,
Kaszynski
,
A.
,
Brown
,
J.
,
Beck
,
J.
, and
Slater
,
J.
,
2018
, “
Mistuning Evaluation Comparison Via as-Manufactured Models, Traveling Wave Excitation, and Compressor Rigs
,”
ASME J. Eng. Gas Turbines Power
,
141
(
6
), p.
061006
.10.1115/1.4042079
14.
Feiner
,
D.
,
Griffin
,
J.
,
Jones
,
K.
,
Kenyon
,
J.
,
Mehmed
,
O.
, and
Kurkov
,
A.
,
2003
, “
System Identification of Mistuned Bladed Disks From Traveling Wave Response Measurements
,”
ASME
Paper No. DETC2003/VIB-48448.10.1115/DETC2003/VIB-48448
15.
Feiner
,
D.
, and
Griffin
,
J.
,
2002
, “
A Fundamental Model of Mistuning for a Single Family of Modes
,”
ASME J. Turbomach.
,
124
(
4
), pp.
597
605
.10.1115/1.1508384
16.
Holland
,
D.
,
Castanier
,
M.
,
Ceccio
,
S.
,
Epureanu
,
B.
, and
Filippi
,
S.
,
2010
, “
Testing and Calibration Procedures for Mistuning Identification and Traveling Wave Excitation of Blisks
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
042502
.10.1115/1.3204656
17.
Lim
,
S.
,
Bladh
,
R.
,
Castanier
,
M.
, and
Pierre
,
C.
,
2007
, “
Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,”
AIAA J.
,
45
(
9
), pp.
2285
2298
.10.2514/1.13172
18.
Petrov
,
E.
,
Mare
,
L.
,
Hennings
,
H.
, and
Elliot
,
R.
,
2010
, “
Forced Response of Mistuned Bladed Disks in Gas Flow: A Comparative Study of Predictions and Full-Scale Experimental Results
,”
ASME J. Eng. Gas Turbines Power
,
132
(
5
), p.
052504
.10.1115/1.3205031
19.
Besem
,
F.
,
Kielb
,
R.
,
Galpin
,
P.
,
Zori
,
L.
, and
Key
,
N.
,
2016
, “
Mistuned Forced Response Predictions of an Embedded Rotor in a Multistage Compressor
,”
ASME J. Turbomach.
,
138
(
6
), p.
061003
.10.1115/1.4032164
20.
Besem
,
F.
,
Kielb
,
R.
, and
Key
,
N.
,
2016
, “
Forced Response Sensitivity of a Mistuned Rotor From on Embedded Compressor Stage
,”
ASME J. Turbomach.
,
138
(
3
), p.
031002
.10.1115/1.4031866
21.
Li
,
J.
,
Aye-Addo
,
N.
,
Kormanik
, III
,
N.
,
Mathews
,
D.
,
Key
,
N.
, and
Kielb
,
R.
,
2017
, “
Mistuned Higher Order Mode Forced Response of an Embedded Compressor Rotor—Part I: Steady and Unsteady Aerodynamics
,”
ASME
Paper No. GT2017-64633.10.1115/GT2017-64633
22.
Li
,
J.
,
Aye-Addo
,
N.
,
Kielb
,
R.
, and
Key
,
N.
,
2018
, “
Mistuned Higher Order Mode Forced Response of an Embedded Compressor Rotor—Part II: Mistuned Forced Response Prediction
,”
ASME J. Turbomach.
,
140
(
3
), p.
031006
.10.1115/1.4038519
23.
Schoenenborn
,
H.
,
Grossmann
,
D.
,
Satzger
,
W.
, and
Zisik
,
H.
,
2009
, “
Determination of Blade-Alone Frequencies of a Blisk for Mistuning Analysis Based on Optical Measurements
,”
ASME
Paper No. GT2009-59148.10.1115/GT2009-59148
24.
Honisch
,
P.
,
Strehlau
,
U.
, and
Kuhhorn
,
A.
,
2012
, “
Modelling of Industrial Blade Integrated Disks (Blisks) With Regard to Mistuning
,”
Proceedings of ISMA2012-USD2012
, Leuven, Belgium, Paper No.
660
.http://past.isma-isaac.be/downloads/isma2012/papers/isma2012_0660.pdf
25.
de Cazenove
,
J.
,
Cogan
,
S.
, and
Mbaye
,
M.
,
2013
, “
Finite-Element Modelling of an Experimental Mistuned Bladed Disk and Experimental Validation
,”
ASME
Paper No. GT2013-95985.10.1115/GT2013-95985
26.
Nyssen
,
F.
, and
Golinval
,
M.
,
2015
, “
Experimental Modal Identification of Mistuning in an Academic Blisk and Comparison With the Blades Geometry Variations
,”
ASME
Paper No. GT2015-43436.10.1115/GT2015-43436
27.
Kaszynski
,
A.
,
Beck
,
J.
, and
Brown
,
J.
,
2015
, “
Experimental Validation of an Optically Measured Digital Replica of a Geometrically Mistuned Rotor Using a System ID Approach
,”
AIAA
Paper No.
2015
1371
.10.2514/6.2015-1371
28.
Hah
,
C.
,
Puterbaugh
,
S.
, and
Copenhaver
,
W.
,
1997
, “
Unsteady Aerodynamic Flow Phenomena in a Transonic Compressor Stage
,”
J. Propul. Power
,
13
(
3
), pp.
329
333
.10.2514/2.5175
29.
Feiner
,
D.
, and
Griffin
,
J.
,
2004
, “
Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model—Part I: Theory
,”
ASME J. Turbomach.
,
126
(
1
), pp.
150
158
.10.1115/1.1643913
30.
Feiner
,
D.
, and
Griffin
,
J.
,
2004
, “
Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model—Part II: Application
,”
ASME J. Turbomach.
,
126
(
1
), pp.
159
165
.10.1115/1.1643914
31.
Bertini
,
L.
,
Santus
,
C.
, and
Guglielmo
,
A.
,
2017
, “
Automated Experimental Modal Analysis of Bladed Wheels With an Anthropomorphic Robotic Station
,”
Exp. Mech.
,
57
(
2
), pp.
273
285
.10.1007/s11340-016-0223-5
32.
Kammerer
,
A.
, and
Abhari
,
R.
,
2009
, “
Experimental Study on Impeller Blade Vibration During Resonance—Part I: Blade Vibration Due to Inlet Flow Distortion
,”
ASME J. Eng. Gas Turbines and Power
,
131
(
2
), p.
022508
.10.1115/1.2968869
33.
Cox
,
G.
,
Palazotto
,
A.
,
Brown
,
J.
, and
George
,
T.
,
2014
, “
Traveling Wave Excitation: A Method to Produce Consistent Experimental Results
,”
ASME J. Eng. Gas Turbines Power
,
136
(
12
), p.
122502
.10.1115/1.4027744
34.
Castanier
,
M.
, and
Pierre
,
C.
,
2006
, “
Modeling and Analysis of Mistuned Bladed Disk Vibration: Current Status and Emerging Directions
,”
J. Propul. Power
,
22
(
2
), pp.
384
396
.10.2514/1.16345
35.
Jones
,
K.
, and
Cross
,
C.
,
2003
, “
Traveling Wave Excitation System for Bladed Disks
,”
J. Propul. Power
,
19
(
1
), pp.
135
141
.10.2514/2.6089
36.
Bertini
,
L.
,
Neri
,
P.
,
Santus
,
C.
, and
Guglielmo
,
A.
,
2017
, “
One Exciter Per Sector Test Bench for Bladed Wheels Harmonic Response Analysis
,”
ASME
Paper No. GT2017-63628.10.1115/GT2017-63628
37.
Neri
,
P.
,
2018
, “
Excitation Device for High Frequency Vibration Analysis: Design and Test Results
,”
J. Vib. Control
,
24
(
19
), pp. 4620–4629.10.1177/1077546317731210
38.
Fredrick
,
N.
, and
Hayes
,
B.
,
2010
, “
Best Practice: Non-Contact Stress Measurement Blade Tip-Timing
,” AEDC, Arnold Air Force Base, TN.
39.
Brajlih
,
T.
,
Tasic
,
T.
,
Drstvensek
,
I.
,
Valentan
,
B.
,
Hadzistevic
,
M.
,
Pogacar
,
V.
,
Balic
,
J.
, and
Acko
,
B.
,
2011
, “
Possibilities of Using Three-Dimensional Optical Scanning in Complex Geometrical Inspection
,”
J. Mech. Eng.
,
57
(
11
), pp.
826
833
.10.5545/sv-jme.2010.152
40.
Chen
,
P.
, and
Krauss
,
A.
,
2004
, “
Pearson's Correlation Coefficient
,”
The SAGE Encyclopedia of Social Science Research Methods
, London.
You do not currently have access to this content.