Abstract

The difference in dynamic behavior of the rotor-bearing system supported by the bearing model that considers both lateral and angular whirling motions of the journal (model A), and the model that considers only lateral whirling motion (model B) is investigated. The rotor model consists of a slender shaft, a large disk, and two small disks supported by a self-aligning rolling element bearing (REB) and an axial groove journal bearing (JB) of length-to-diameter ratio (L/D) = 0.6. Three positions of the large disk: 410, 560, and 650 mm measured from the REB, are investigated. Numerical integration of the rotor-bearing system which is modally reduced to the first forward (FWD) mode is performed at above the onset speed of instability until either a steady-state journal orbit or contact between the journal and the bearing occurs to identify the bifurcation type. Numerical results using model A indicate subcritical bifurcation with the contact between the journal and the inboard (IB) side of the bearing in all three large disk positions, whereas those of model B indicate subcritical bifurcation when the large disk position is at 410 mm, and supercritical bifurcation is observed in the other two cases. Finally, the experiments at the same three large disk positions are performed. Subcritical bifurcation with the contact between the journal and the IB side of the bearing is observed in all large disk positions, which conforms with the calculation result of model A. Hence, model A is essential in nonlinear vibration analysis of a highly flexible rotor system.

References

1.
Muszynska
,
A.
,
1988
, “
Stability of Whirl and Whip in Rotor/Bearing Systems
,”
J. Sound Vib.
,
127
(
1
), pp.
49
64
.10.1016/0022-460X(88)90349-5
2.
Childs
,
D.
,
1993
,
Turbomachinery Rotordynamics: Phenomena, Modeling, & Analysis
,
Wiley
,
New York
.
3.
Noah
,
S. T.
,
1995
, “
Significance of Considering Nonlinear Effects in Predicting the Dynamic Behavior of Rotating Machinery
,”
J. Vib. Control
,
1
, pp.
431
458
.10.1177/107754639500100403
4.
Castro
,
H. F.
,
Cavalca
,
K. L.
, and
Nordman
,
R.
,
2006
, “
Rotor-Bearing Systems Instabilities Considering a Non-Linear Hydrodynamic Model
,”
Seventh IFToMM-Conference on Rotor Dynamics
, Vienna, Austria, Sept. 25–28, 2006, pp.
1
10
.
5.
Ma
,
H.
,
Li
,
H.
,
Zhao
,
X.
,
Niu
,
H.
, and
Wen
,
B.
,
2013
, “
Effects of Eccentric Phase Difference Between Two Discs on Oil-Film Instability in a Rotor–Bearing System
,”
J. Mech. Syst. Signal Process.
,
41
(
1–2
), pp.
526
545
.10.1016/j.ymssp.2013.05.006
6.
Castro
,
H. F.
,
Cavalca
,
K. L.
, and
Nordman
,
R.
,
2008
, “
Rotor-Bearing Systems Instabilities Considering a Non-Linear Hydrodynamic Model
,”
J. Sound. Vib.
,
317
, pp.
273
293
.10.1016/j.jsv.2008.02.047
7.
Cao
,
J. F.
,
2012
, “
Transient Analysis of Flexible Rotors With Nonlinear Bearings, Dampers and External Forces
,” Ph.D. thesis, University of Virginia, Charlottesville, VA.
8.
Zheng
,
T.
, and
Hasebe
,
N.
,
2000
, “
Nonlinear Dynamic Behaviors of a Complex Rotor-Bearing System
,”
ASME J. Appl. Mech.
,
67
(
3
), pp.
485
495
.10.1115/1.1286208
9.
Vijayaraghavan
,
D.
, and
Keith
,
T. G.
,
1990
, “
Analysis of a Finite Misaligned Journal Bearing Considering Cavitation and Starvation Effects
,”
ASME J. Tribol.
,
112
(
1
), pp.
60
67
.10.1115/1.2920231
10.
Sun
,
J.
, and
Gui
,
C. L.
,
2004
, “
Hydrodynamic Lubrication Analysis of Journal Bearing Considering Misalignment Caused by Shaft Deformation
,”
Tribol. Int.
,
37
(
10
), pp.
841
848
.10.1016/j.triboint.2004.05.007
11.
Sun
,
J.
,
Gui
,
C.
, and
Li
,
Z.
,
2005
, “
An Experimental Study of Journal Bearing Lubrication Effected by Journal Misalignment as a Result of Shaft Deformation Under Load
,”
ASME J. Tribol.
,
127
(
4
), pp.
813
819
.10.1115/1.2033007
12.
Sun
,
J.
,
Gui
,
C.
,
Li
,
Z.
, and
Li
,
Z.
,
2005
, “
Influence of Journal Misalignment Caused by Shaft Deformation Under Rotational Load on Performance of Journal Bearing
,”
Proc. Inst. Mech. Eng., Part J.
,
219
, pp.
275
283
.10.1243/135065005X33937
13.
Bouyer
,
J.
, and
Fillon
,
M.
,
2002
, “
An Experimental Analysis of Misalignment Effects on Hydrodynamic Plain Journal Bearing Performances
,”
ASME J. Tribol.
,
124
(
2
), pp.
313
319
.10.1115/1.1402180
14.
Arumugam
,
P.
,
Swarnamani
,
S.
, and
Prabhu
,
B. S.
,
1997
, “
Effects of Journal Misalignment on the Performance Characteristics of Three-Lobe Bearings
,”
Wear
,
206
(
1–2
), pp.
122
129
.10.1016/S0043-1648(96)07337-1
15.
Nikolakopoulos
,
P. G.
, and
Papadopoulos
,
C. A.
,
1994
, “
Non-Linearities in Misaligned Journal Bearings
,”
Tribol. Int.
,
27
(
4
), pp.
243
257
.10.1016/0301-679X(94)90004-3
16.
Nikolakopoulos
,
P. G.
, and
Papadopoulos
,
C. A.
,
1995
, “
Lyapunov's Stability of Nonlinear Misaligned Journal Bearings
,”
ASME J. Eng. Gas Turbines Power
,
117
(
3
), pp.
576
581
.10.1115/1.2814134
17.
Lund
,
J. V. V.
, and
Thomsen
,
K. K.
,
1978
, “
A Calculation Method and Data for the Dynamic Coefficients of Oil- Lubricated Journal Bearings
,”
Topics in Fluid Film Bearings and Rotor Bearing System Design and Optimization
,
ASME
,
New York
, pp.
1
28
.
18.
Khonsari
,
M. M.
, and
Booser
,
E. R.
,
2001
,
Applied Tribology
,
Wiley
, Hoboken, NJ.
19.
Guyan
,
R. J.
,
1965
, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
(
2
), p.
380
.10.2514/3.2874
20.
Craig
,
R. R.
, and
Chang
,
C. J.
,
1976
, “
A Review of Substructure Coupling Methods for Dynamic Analysis
,”
Adv. Eng. Sci.
,
2
, pp.
393
408
.
21.
Glasgow
,
D. A.
, and
Nelson
,
H. D.
,
1980
, “
Stability Analysis of Rotor-Bearing Systems Using Component Mode Synthesis
,”
ASME J. Mech.
,
102
(
2
), pp.
352
359
.10.1115/1.3254751
22.
Kano
,
H.
,
Ito
,
M.
, and
Inoue
,
T.
,
2019
, “
Order Reduction and Bifurcation Analysis of a Flexible Rotor System Supported by a Full Circular Journal Bearing
,”
Nonlinear Dyn.
,
95
(
4
), p.
3275
.10.1007/s11071-018-04755-z
23.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1995
,
Applied Nonlinear Dynamics
,
Wiley
,
New York
.
You do not currently have access to this content.