Abstract

Microgas turbine (MGT) engines in the range of 1–100 kW are playing a key role in distributed generation applications, due to the high reliability and quick load following that favor their integration with intermittent renewable sources. Micro-combined heat and power (CHP) systems based on gas turbine technology are obtaining a higher share in the market and are aiming at reducing the costs and increasing energy conversion efficiency. An effective control of system operating parameters during the whole engine lifetime is essential to maintain desired performance and at the same time guarantee safe operations. Because of the necessity to reduce the costs, fewer sensors are usually available than in standard industrial gas turbines, limiting the choice of control parameters. This aspect is aggravated by engine aging and deterioration phenomena that change operating performance from the expected one. In this situation, a control architecture designed for healthy operations may not be adequate anymore, because the relationship between measured parameters and unmeasured variables (e.g., turbine inlet temperature (TIT) or efficiency) varies depending on the level of engine deterioration. In this work, an adaptive control scheme is proposed to compensate the effects of engine degradation over the lifetime. Component degradation level is monitored by a diagnostic tool that estimates performance variations from the available measurements; then, the information on the gas turbine health condition is used by an observer-based model predictive controller to maintain the machine in a safe range of operation and limit the reduction in system efficiency.

References

1.
Cochran
,
J.
,
Bird
,
L.
,
Heeter
,
J.
, and
Arent
,
J. D.
,
2012
, “
Integrating Variable Renewable Energy in Electric Power Markets: Best Practices From International Experience
,” National Renewable Energy Laboratory, Lakewood, CO, Report No.
NREL/TP-6A00 53732
.https://www.nrel.gov/docs/fy12osti/53730.pdf
2.
Rossi
,
I.
,
Sorce
,
A.
, and
Traverso
,
A.
,
2017
, “
Gas Turbine Combined Cycle Start-Up and Stress Evaluation: A Simplified Dynamic Approach
,”
Appl. Energy
,
190
, pp.
880
890
.10.1016/j.apenergy.2016.12.141
3.
Yan
,
J.
,
Chou
,
S. K.
,
Desideri
,
U.
, and
Xia
,
X.
,
2014
, “
Innovative and Sustainable Solutions of Clean Energy Technologies and Policies: Part I
,”
Appl. Energy
,
130
, pp.
447
449
.10.1016/j.apenergy.2014.05.052
4.
Gopisetty
,
S.
, and
Treffinger
,
P.
,
2016
, “
Generic Combined Heat and Power (CHP) Model for the Concept Phase of Energy Planning Process
,”
Energies
,
10
(
1
), p.
11
.10.3390/en10010011
5.
Sun
,
L.
,
Zheng
,
Q.
,
Li
,
Y.
,
Luo
,
M.
, and
Bhargava
,
R. K.
,
2012
, “
Numerical Simulation of a Complete Gas Turbine Engine With Wet Compression
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
012002
.10.1115/1.4007366
6.
Ofualagba
,
G.
,
2012
, “
The Modeling and Simulation of a Microturbine Generation System
,”
Int. J. Sci. Eng. Res.
,
2
, pp.
1
7
.https://www.ijser.org/paper/The-Modeling-and-Simulation-of-a-Microturbine-Generation-System.html
7.
Saebea
,
D.
,
Magistri
,
L.
,
Massardo
,
A.
, and
Arpornwichanop
,
A.
,
2017
, “
Cycle Analysis of Solid Oxide Fuel Cell-Gas Turbine Hybrid Systems Integrated Ethanol Steam Reformer: Energy Management
,”
Energy
,
127
, pp.
743
755
.10.1016/j.energy.2017.03.105
8.
Nelson
,
J.
,
Johnson
,
N. G.
,
Doron
,
P.
, and
Stechel
,
E. B.
,
2018
, “
Thermodynamic Modeling of Solarized Microturbine for Combined Heat and Power Applications
,”
Appl. Energy
,
212
, pp.
592
606
.10.1016/j.apenergy.2017.12.015
9.
De Paepe
,
W.
,
Carrero
,
M. M.
,
Bram
,
S.
,
Parente
,
A.
, and
Contino
,
F.
,
2014
, “
Experimental Characterization of a T100 Micro Gas Turbine Converted to Full Humid Air Operation
,”
Energy Procedia
,
61
, pp.
2083
2088
.10.1016/j.egypro.2014.12.081
10.
Zabihian
,
F.
,
Fung
,
A. S., D.
, and
Chiang
,
H. W.
,
2011
, “
Modeling of Biodiesel Fueled Micro Gas Turbine
,”
ASME
Paper No. GT2011-46655.10.1115/GT2011-46655
11.
Traverso
,
A.
,
Calzolari
,
F.
, and
Massardo
,
A. F.
,
2005
, “
Transient Behaviour of and Control System for Micro Gas Turbine Advanced Cycles
,”
ASME J. Eng. Gas Turbines Power
,
127
(
2
), pp.
340
347
.10.1115/1.1839918
12.
Mohanraj
,
B. S.
, and
Arunnambi
,
S.
,
2014
, “
Micro-Turbine Generation Control System Optimization Using Evolutionary Algorithm
,”
Int. J. Eng. Res. Appl.
,
4
(
10
), pp.
62
68
. http://ijera.com/papers/Vol4_issue10/Part%20-%204/K410046268.pdf
13.
Wu
,
X.
,
Shen
,
J.
,
Li
,
Y.
,
Zhang
,
J.
, and
Lee
,
K. Y.
,
2016
, “
Data-Driven Predictive Control of Micro Gas Turbine Combined Cooling Heating and Power System
,”
IFAC
,
49
(
27
), pp.
419
424
.10.1016/j.ifacol.2016.10.769
14.
Tsai
,
A.
,
Pezzini
,
P.
,
Tucker
,
D.
, and
Bryden
,
K. M.
,
2017
, “
Multiple-Model Adaptive Control of a Hybrid Solid Oxide Fuel Cell Gas Turbine Power Plant Simulator
,”
ASME
No. GT2017-64987.10.1115/GT2017-64987
15.
Rossi
,
I.
,
Zaccaria
,
V.
, and
Traverso
,
A.
,
2018
, “
Advanced Control for Clusters of SOFC/GT Hybrid Systems
,”
ASME J. Eng. Gas Turbine Power
,
140
(
5
), p.
051703
.10.1115/1.4038321
16.
Mahmood
,
M.
,
Martini
,
A.
,
Massardo
,
A. F.
, and
De Paepe
,
W.
,
2018
, “
Model Based Diagnostics of AE-T100 Micro Humid Air Turbine Cycle
,”
ASME
Paper No. GT2018-75979.10.1115/GT2018-75979
17.
Davison
,
C. R.
, and
Birk
,
A. M.
,
2006
, “
Automated Fault Diagnosis of a Micro Turbine With Comparison to a Neural Network Technique
,”
ASME
Paper No. GT2006-91085.10.1115/GT2006-91085
18.
Can Gulen
,
S.
,
2018
, “
Beyond Brayton Cycle: It Is Time to Change the Paradigm
,”
ASME J. Eng. Gas Turbines Power
,
140
, p.
111703
.10.1115/1.4039828
19.
Rahimi
,
F.
, and
Lemma
,
T. A.
,
2017
, “
Gas Turbine Fault Diagnostics Using Fuzzy Systems
,” Seventh IEEE International Conference on Control System, Computing and Engineering (
ICCSCE
), Penang, Malaysia, Nov. 24–26, pp.
314
319
.10.1109/ICCSCE.2017.8284426
20.
Rahman
,
M.
,
Zaccaria
,
V.
,
Zhao
,
X.
, and
Kyprianidis
,
K.
,
2018
, “
Diagnostics-Oriented Modelling of Micro Gas Turbines for Fleet Monitoring and Maintenance Optimization
,”
Processes
,
6
(
11
), pp.
216
222
.10.3390/pr6110216
21.
Ferrari
,
M. L.
,
Silvestri
,
P.
,
Reggio
,
F.
, and
Massardo
,
A. F.
,
2018
, “
Surge Prevention for Gas Turbines Connected With Large Volume Size: Experimental Demonstration With a Microturbine
,”
Appl. Energy
,
230
, pp.
1057
1064
.10.1016/j.apenergy.2018.09.075
22.
Ansaldo Energia,
2018
, “
Microturbines AE-T100
,” Ansaldo Energia, Genoa, Italy, accessed Oct. 4,
2018
, https://www.ansaldoenergia.com/business-lines/new-units/microturbines
23.
Caratozzolo
,
F.
,
Ferrari
,
M. L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2013
, “
Emulator Rig for SOFC Hybrid Systems: Temperature and Power Control With a Real-Time Software
,”
Fuel Cells
,
13
(
6
), pp.
1123
1130
.10.1002/fuce.201200229
24.
Pezzini
,
P.
,
Caratozzolo
,
F.
, and
Traverso
,
A.
,
2011
, “
Real-Time Simulation of an Experimental Rig With Pressurized SOFC
,”
ASME
Paper No. GT2011-45527.10.1115/GT2011-45527
25.
Traverso
,
A.
,
2005
, “
TRANSEO Code for the Dynamic Performance Simulation of Micro Gas Turbine Cycles
,”
ASME
Paper No. GT-2005-68101.10.1115/GT-2005-68101
26.
Larosa
,
L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2016
, “
Dynamic Analysis of a Recuperated mGT Cycle for Fuel Cell Hybrid Systems
,”
ASME
Paper No. GT-2016-57312.10.1115/2016-57312
27.
Larosa
,
L.
,
Zaccaria
,
V.
, and
Traverso
,
A.
,
2015
, “
Ambient Temperature Impact on Pressurized SOFC Hybrid Systems
,”
ASME
Paper No. GT2015-42364.10.1115/GT2015-42364
28.
Kurz
,
R.
,
Brun
,
K.
, and
Wollie
,
M.
,
2009
, “
Degradation Effects on Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
131
(
6
), p.
62401
.10.1115/1.3097135
29.
Brun
,
K.
,
Kurz
,
R.
, and
Simmons
,
H. R.
,
2005
, “
Aerodynamic Instability and Life Limiting Effects of Inlet and Interstage Water Injection Into Gas Turbines
,”
ASME
Paper No. GT2005-68007.10.1115/GT2005-68007
You do not currently have access to this content.