Abstract

Premixed or partially premixed swirling flames are widely used in gas turbine applications because of their compactness, high ignition efficiency, low NOx emissions and flame stability. A typical annular combustor consists of about twenty swirling flames, which interact (directly or indirectly) with their immediate neighbors even during stable operation. These interactions significantly alter the flow and flame topologies thereby bringing in some discrepancies between the single nozzle (SN) and multinozzle (MN), ignition, emission, pattern factor and flame transfer function (FTF) characteristics. For example, in MN configurations, application of a model based on SN FTF data could lead to erroneous conclusions. Due to the complexities involved in this problem in terms of size, thermal power, cost, optical accessibility etc., a limited amount of experimental studies has been reported, that too on scaled down models with reduced number of nozzles. Here, we present a detailed experimental study on the behavior of three interacting swirl premixed flames, arranged in-line in an optically accessible hollow cuboid test section, which closely resembles a three-cup sector of an annular gas turbine combustor with very large radius. Multiple configurations with various combinations of swirl levels between the adjacent nozzles and the associated flame and flow topologies have been studied. Spatio-temporal information of the heat release rate obtained from OH* chemiluminescence imaging is used along with the acoustic pressure signatures to compute the Rayleigh index (RI) so as to identify the regions within the flame that pumps energy into the self-excited thermoacoustic instability modes. It is found that the structure of the flame–flame interaction regions plays a dominant role in the resulting thermoacoustic instability. To resolve the flow and reactive species distributions in the interacting flames, two-dimensional (2D), three component stereoscopic particle image velocimetry (SPIV) and planar laser-induced fluorescence (PLIF) of hydroxyl radical is applied to all the test conditions. Significant differences in the flow structures among the different configurations were observed. Simultaneous OH-PLIF and SPIV techniques were also utilized to track the flame front, from which the curvature and stretch rates were computed. Flame surface density (FSD) which is defined as the mean surface area of the reaction zone per unit volume, is also computed for all the test cases. These measurements and analyses elucidate the structure of the interaction regions, their unique characteristics, and possible role in thermoacoustic instability.

References

1.
Weber
,
R.
, and
Dugué
,
J.
,
1992
, “
Combustion Accelerated Swirling Flows in High Confinements
,”
Prog. Energy Combust. Sci.
,
18
(
4
), pp.
349
367
.10.1016/0360-1285(92)90005-L
2.
Anacleto
,
P.
,
Fernandes
,
E.
,
Heitor
,
M.
, and
Shtork
,
S.
,
2003
, “
Swirl Flow Structure and Flame Characteristics in a Model Lean Premixed Combustor
,”
Combust. Sci. Technol.
,
175
(
8
), pp.
1369
1388
.10.1080/00102200302354
3.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
Abacus Press
,
Tunbridge Wells, Kent, UK
, p.
488
.
4.
El-Mahallawy
,
F.
, and
Habik
,
S.-D.
,
2002
,
Fundamentals and Technology of Combustion
,
Elsevier
, Oxford, UK.
5.
Stone
,
C.
, and
Menon
,
S.
,
2002
, “
Swirl Control of Combustion Instabilities in a Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
155
160
.10.1016/S1540-7489(02)80024-4
6.
Mansour
,
M.
, and
Chen
,
Y.-C.
,
2008
, “
Stability Characteristics and Flame Structure of Low Swirl Burner
,”
Exp. Therm. Fluid Sci.
,
32
(
7
), pp.
1390
1395
.10.1016/j.expthermflusci.2007.11.012
7.
Huang
,
Y.
, and
Yang
,
V.
,
2004
, “
Bifurcation of Flame Structure in a Lean-Premixed Swirl-Stabilized Combustor: Transition From Stable to Unstable Flame
,”
Combust. Flame
,
136
(
3
), pp.
383
389
.10.1016/j.combustflame.2003.10.006
8.
Kim
,
W.-W.
,
Menon
,
S.
, and
Mongia
,
H. C.
,
1999
, “
Large-Eddy Simulation of a Gas Turbine Combustor Flow
,”
Combust. Sci. Technol.
,
143
(
1–6
), pp.
25
62
.10.1080/00102209908924192
9.
Sommerer
,
Y.
,
Galley
,
D.
,
Poinsot
,
T.
,
Ducruix
,
S.
,
Lacas
,
F.
, and
Veynante
,
D.
,
2004
, “
Large Eddy Simulation and Experimental Study of Flashback and Blow-Off in a Lean Partially Premixed Swirled Burner
,”
J. Turbul.
,
5
(
37
), pp.
1
3
.10.1088/1468-5248/5/1/037
10.
Syred
,
N.
,
Chigier
,
N.
, and
Beer
,
J.
,
1971
, “
Flame Stabilization in Recirculation Zones of Jets With Swirl
,”
Symp. (Int.) Combust.
,
13
(
1
), pp.
617
624
.10.1016/S0082-0784(71)80063-2
11.
Tangirala
,
V.
,
Chen
,
R.
, and
Driscoll
,
J. F.
,
1987
, “
Effect of Heat Release and Swirl on the Recirculation Within Swirl-Stabilized Flames
,”
Combust. Sci. Technol.
,
51
(
1–3
), pp.
75
95
.10.1080/00102208708960316
12.
Cavaliere
,
D. E.
,
Kariuki
,
J.
, and
Mastorakos
,
E.
,
2013
, “
A Comparison of the Blow-Off Behaviour of Swirl-Stabilized Premixed, Non-Premixed and Spray Flames
,”
Flow, Turbul. Combust.
,
91
(
2
), pp.
347
372
.10.1007/s10494-013-9470-z
13.
Muruganandam
,
T.
, and
Seitzman
,
J.
,
2005
, “
Characterization of Extinction Events Near Blowout in Swirl Dump Combustors
,”
AIAA
Paper No. 2005-4331. 10.2514/6.2005-4331
14.
O'Connor
,
J.
,
Acharya
,
V.
, and
Lieuwen
,
T.
,
2015
, “
Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Processes
,”
Prog. Energy Combust. Sci.
,
49
, pp.
1
39
.10.1016/j.pecs.2015.01.001
15.
Gopakumar
,
R.
,
Mondal
,
S.
,
Paul
,
R.
,
Mahesh
,
S.
, and
Chaudhuri
,
S.
,
2016
, “
Mitigating Instability by Actuating the Swirler in a Combustor
,”
Combust. Flame
,
165
, pp.
361
363
.10.1016/j.combustflame.2015.12.019
16.
Mahesh
,
S.
,
Gopakumar
,
R.
,
Rahul
,
B.
,
Dutta
,
A.
,
Mondal
,
S.
, and
Chaudhuri
,
S.
,
2018
, “
Instability Control by Actuating the Swirler in a Lean Premixed Combustor
,”
J. Propul. Power
,
34
(
3
), pp.
708
719
.10.2514/1.B36366
17.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
18.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.10.1016/j.pecs.2005.10.002
19.
Ahmad
,
N.
, and
Andrews
,
G.
,
1986
, “
Enclosed Swirl Flames: Interaction Between Swirlers in Lean Primary Zones
,”
ASME
Paper No. 86-GT-278. 10.1115/86-GT-278
20.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2012
, “
Cinematographic OH-PLIF Measurements of Two Interacting Turbulent Premixed Flames With and Without Acoustic Forcing
,”
Combust. Flame
,
159
(
3
), pp.
1109
1126
.10.1016/j.combustflame.2011.09.006
21.
Kunze
,
K.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2004
, “
Transfer Function Measurements on a Swirl Stabilized Premix Burner in an Annular Combustion Chamber
,”
ASME
Paper No. GT2004-53106. 10.1115/GT2004-53106
22.
Samarasinghe
,
J.
,
Culler
,
W.
,
Quay
,
B. D.
,
Santavicca
,
D. A.
, and
O'Connor
,
J.
,
2017
, “
The Effect of Fuel Staging on the Structure and Instability Characteristics of Swirl-Stabilized Flames in a Lean Premixed Multinozzle Can Combustor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p.
121504
.10.1115/1.4037461
23.
Noiray
,
N.
,
Bothien
,
M.
, and
Schuermans
,
B.
,
2011
, “
Investigation of Azimuthal Staging Concepts in Annular Gas Turbines
,”
Combust. Theory Modell.
,
15
(
5
), pp.
585
606
.10.1080/13647830.2011.552636
24.
Vishwanath
,
R. B.
,
Tilak
,
P. M.
, and
Chaudhuri
,
S.
,
2018
, “
An Experimental Study of Interacting Swirl Flows in a Model Gas Turbine Combustor
,”
Exp. Fluids
,
59
(
3
), p.
38
.10.1007/s00348-018-2495-2
25.
Lee
,
T.
,
Park
,
J.
,
Han
,
D.
, and
Kim
,
K. T.
,
2019
, “
The Dynamics of Multiple Interacting Swirl-Stabilized Flames in a Lean-Premixed Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
37
(
4
), pp. 5137–5145.10.1016/j.proci.2018.05.110
26.
Smith
,
T. E.
,
Chterev
,
I. P.
,
Emerson
,
B. L.
,
Noble
,
D. R.
, and
Lieuwen
,
T. C.
,
2018
, “
Comparison of Single-and Multinozzle Reacting Swirl Flow Dynamics
,”
J. Propul. Power
,
34
(
2
), pp.
384
394
.10.2514/1.B36623
27.
Karlovitz
,
B.
,
Denniston Jr
,
D.
,
Knapschaefer
,
D.
, and
Wells
,
F.
,
1953
, “
Studies on Turbulent Flames: A. Flame Propagation Across Velocity Gradients B. Turbulence Measurement in Flames
,”
Symp. (Int.) Combust.
,
4
(
1
), pp.
613
620
.10.1016/S0082-0784(53)80082-2
28.
Williams
,
F.
,
1975
, “
Recent Advances in Theoretical Descriptions of Turbulent Diffusion Flames
,”
Turbulent Mixing in Nonreactive and Reactive Flows
, Springer-Verlag, NY, pp.
189
208
.
29.
Chung
,
S.
, and
Law
,
C.
,
1984
, “
An Invariant Derivation of Flame Stretch
,”
Combust. Fuel
,
55
(
1
), pp.
123
125
.10.1016/0010-2180(84)90156-1
30.
Pope
,
S.
,
1988
, “
The Evolution of Surfaces in Turbulence
,”
Int. J. Eng. Sci.
,
26
(
5
), pp.
445
469
.10.1016/0020-7225(88)90004-3
31.
Filatyev
,
S. A.
,
Driscoll
,
J. F.
,
Carter
,
C. D.
, and
Donbar
,
J. M.
,
2005
, “
Measured Properties of Turbulent Premixed Flames for Model Assessment, Including Burning Velocities, Stretch Rates, and Surface Densities
,”
Combust. Flame
,
141
(
1–2
), pp.
1
21
.10.1016/j.combustflame.2004.07.010
You do not currently have access to this content.