Abstract

Mistuning phenomena exist in the bladed disk due to the inevitable deviations among blades' properties, e.g., stiffness, mass, geometry, etc., leading to localization and response amplification. The dynamic performance of mistuned bladed disk is sensitive to the arrangement of blades. The blade arrangement optimization aims to obtain the optimal arrangement that minimizes the influence of mistuning. In this paper, a framework of high efficiency is raised to deal with the challenge of high computational cost this optimization. It comprehensively utilizes mixed-dimensional finite element model (MDFEM), Gaussian process (GP) regression, and genetic algorithm (GA). The MDFEM can perform mistuned modal analysis efficiently and provides the training set of GP regression rapidly. The GP model, as a surrogate model, predicts the desired dynamic performance directly without calculating the numerical model and can function as fitness function in optimization. GA has the capability to deal with combinatorial problems and is a good option for problems with large search domains and several local maxima/minima. The techniques and processes of three methods are illustrated in detail. Case studies, based on a real turbine, are concretely presented in a gradually progressive manner to test and verify the effectiveness, accuracy, and efficiency of methods and entire framework step by step. The results show the satisfactory optimal arrangement for a randomly chosen set of mistuned blades, and the influence of mistuning is reduced indeed. The time cost of the optimization has been reduced several orders of magnitude. This framework can be a promising approach for the blade arrangement optimization problem.

References

1.
Soares
,
C. A. M.
, and
Petyt
,
M.
,
1978
, “
Finite Element Dynamic Analysis of Practical Discs
,”
J. Sound Vib.
,
61
(
4
), pp.
547
560
.10.1016/0022-460X(78)90454-6
2.
Thomas
,
D. L.
,
1979
, “
Dynamics of Rotationally Periodic Structures
,”
Int. J. Numer. Methods Eng.
,
14
(
1
), pp.
81
102
.10.1002/nme.1620140107
3.
Shen
,
I. Y.
, and
Ku
,
C. P. R.
,
1997
, “
A Nonclassical Vibration Analysis of a Multiple Rotating Disk and Spindle Assembly
,”
ASME J. Appl. Mech.
,
64
(
1
), pp.
165
174
.10.1115/1.2787269
4.
Wei
,
S. T.
, and
Pierre
,
C.
,
1988
, “
Localization Phenomena in Mistuned Assemblies With Cyclic Symmetry Part I: Free Vibrations
,”
J. Vib. Acoust. Stress Reliab. Des.
,
110
(
4
), pp.
429
438
.10.1115/1.3269547
5.
Wei
,
S. T.
, and
Pierre
,
C.
,
1988
, “
Localization Phenomena in Mistuned Assemblies With Cyclic Symmetry Part II: Forced Vibrations
,”
J. Vib. Acoust. Stress Reliab. Des.
,
110
(
4
), pp.
439
449
.10.1115/1.3269548
6.
Castanier
,
M. P.
, and
Pierre
,
C.
,
2002
, “
Using Intentional Mistuning in the Design of Turbomachinery Rotors
,”
AIAA J.
,
40
(
10
), pp.
2077
2086
.10.2514/2.1542
7.
Choi
,
B. K.
,
2003
, “
Pattern Optimization of Intentional Blade Mistuning for the Reduction of the Forced Response Using Genetic Algorithm
,”
KSME Int. J.
,
17
(
7
), pp.
966
977
.10.1007/BF02982981
8.
Han
,
Y.
,
Murthy
,
R.
,
Mignolet
,
M. P.
, and
Lentz
,
J.
,
2014
, “
Optimization of Intentional Mistuning Patterns for the Mitigation of the Effects of Random Mistuning
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
062505
.10.1115/1.4026141
9.
Zhao
,
T.
,
Yuan
,
H.
,
Yang
,
W.
, and
Sun
,
H.
,
2017
, “
Genetic Particle Swarm Parallel Algorithm Analysis of Optimization Arrangement on Mistuned Blades
,”
Eng. Optim.
,
49
(
12
), pp.
2095
2116
.10.1080/0305215X.2017.1292422
10.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2001
, “
Analysis of the Worst Mistuning Patterns in Bladed Disc Assemblies
,”
ASME
Paper No. 2001-GT-0292.10.1115/2001-GT-0292
11.
Hohl
,
A.
, and
Wallaschek
,
J. R.
,
2016
, “
A Method to Reduce the Energy Localization in Mistuned Laded Disks by Application-Specific Blade Pattern Arrangement
,”
ASME J. Eng. Gas Turbines Power
,
138
(
9
), p.
092502
.10.1115/1.4032739
12.
Liu
,
T.
,
Guo
,
D.
,
Zhang
,
D.
, and
Xie
,
Y.
,
2017
, “
Combinatorial Optimization of Mistuned Blade Rearrangement Based on Reduced-Order FEA Model
,”
ASME
Paper No. GT2017-63867.10.1115/GT2017-63867
13.
Li
,
Y.
,
Yuan
,
H.
, and
Yang
,
S.
,
2013
, “
Optimization on Mistuning Blades Arrangement of Vibration Absorption Based on Genetic Particle Swarm Algorithm in Aero-Engine
,”
Adv. Mater. Res.
,
655
, pp.
481
485
.10.4028/www.scientific.net/AMR.655-657.481
14.
Castanier
,
M. P.
,
Óttarsson
,
G.
, and
Pierre
,
C.
,
1997
, “
A Reduced Order Modeling Technique for Mistuned Bladed Disks
,”
ASME J. Vib. Acoust.
,
119
(
3
), pp.
439
447
.10.1115/1.2889743
15.
Yang
,
M. T.
, and
Griffin
,
J. H.
,
2001
, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
893
900
.10.1115/1.1385197
16.
Khemiri
,
O.
,
Martel
,
C.
, and
Corral
,
R.
,
2014
, “
Forced Response of Mistuned Bladed Disks: Quantitative Validation of the Asymptotic Description
,”
J. Propul. Power
,
30
(
2
), pp.
397
406
.10.2514/1.B34631
17.
Duan
,
Y.
,
Zang
,
C.
, and
Petrov
,
E. P.
,
2016
, “
Forced Response Analysis of High-Mode Vibrations for Mistuned Bladed Disks With Effective Reduced-Order Models
,”
ASME J. Eng. Gas Turbines Power
,
138
(
11
), p.
112502
.10.1115/1.4033513
18.
Schwerdt
,
L.
,
Willeke
,
S.
,
Scheidt
,
L. P.-V.
, and
Wallaschek
,
J.
,
2019
, “
Reduced-Order Modeling of Bladed Disks Considering Small Mistuning of the Disk Sectors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p.
052502
.10.1115/1.4041071
19.
Bampton
,
M. C. C.
, and
Craig
,
R. R.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
20.
Glasgow
,
D. A.
, and
Nelson
,
H. D.
,
1980
, “
Analysis of Rotor-Bearing Systems Using Component Mode Synthesis
,”
ASME J. Mech. Design
,
102
(
2
), pp.
352
359
.10.1115/1.3254751
21.
Pan
,
W.
,
Tang
,
G.
, and
Zhang
,
M.
,
2017
, “
Modal Analysis Method for Blisks Based on Three-Dimensional Blade and Two-Dimensional Axisymmetric Disk Finite Element Model
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052504
.10.1115/1.4035142
22.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
,
The MIT Press
,
Cambridge, MA
.
23.
Seeder
,
M.
,
2008
, “
Gaussian Processes for Machine Learning
,”
Int. J. Neural Syst.
,
14
(
2
), pp.
69
106
.10.1142/S0129065704001899
24.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2012
, “
Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability
,”
ASME J. Mech. Design
,
134
(
10
), p.
100908
.10.1115/1.4007390
25.
Arendt
,
P. D.
,
Apley
,
D. W.
,
Chen
,
W.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2012
, “
Improving Identifiability in Model Calibration Using Multiple Responses
,”
ASME J. Mech. Design
,
134
(
10
), p.
100909
.10.1115/1.4007573
26.
Lebensztajn
,
L.
,
RondiniMarretto
,
C. A.
,
CaldoraCosta
,
M.
, and
Coulomb
,
J.-L.
,
2004
, “
Kriging: A Useful Tool for Electromagnetic Device Optimization
,”
IEEE Trans. Magn.
,
40
(
2
), pp.
1196
1199
.10.1109/TMAG.2004.824542
27.
Li
,
C.
,
Sanchez
,
R.-V.
,
Zurita
,
G.
,
Cerrada
,
M.
,
Cabrera
,
D.
, and
Vásquez
,
R. E.
,
2015
, “
Multimodal Deep Support Vector Classification With Homologous Features and Its Application to Gearbox Fault Diagnosis
,”
Neurocomputing
,
168
, pp.
119
127
.10.1016/j.neucom.2015.06.008
28.
Gang
,
S.
,
Sun
,
Y.
, and
Wang
,
S.
,
2015
, “
Artificial Neural Network Based Inverse Design: Airfoils and Wings
,”
Aerosp. Sci. Technol.
,
42
, pp.
415
428
.10.1016/j.ast.2015.01.030
29.
Xia
,
Z.
, and
Tang
,
J.
,
2013
, “
Characterization of Dynamic Response of Structures With Uncertainty by Using Gaussian Processes
,”
ASME J. Vib. Acoust.
,
135
(
5
), p.
051006
.10.1115/1.4023998
30.
Thompson
,
E. A.
, and
Becus
,
G. A.
,
1993
, “
Optimization of Blade Arrangement in a Randomly Mistuned Cascade Using Simulated Annealing
,”
AIAA
Paper No. 93-2254.10.2514/6.1993-2254
31.
Tsujimura
,
Y.
,
1999
, “
A Tutorial Survey of Job-Shop Scheduling Problems Using Genetic Algorithms—Part II: Hybrid Genetic Search Strategies
,”
Comput. Ind. Eng.
,
37
(
1–2
), pp.
51
55
.10.1016/S0360-8352(99)00022-4
32.
Raeisi
,
E.
, and
Ziaei-Rad
,
S.
,
2013
, “
The Worst Response of Mistuned Bladed Disk System Using Neural Network and Genetic Algorithm
,”
Meccanica
,
48
(
2
), pp.
367
379
.10.1007/s11012-012-9607-5
33.
Lim
,
S.-H.
,
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2007
, “
Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,”
AIAA J.
,
45
(
9
), pp.
2285
2298
.10.2514/1.13172
34.
Chan
,
Y. J.
, and
Ewins
,
D. J.
,
2011
, “
The Amplification of Vibration Response Levels of Mistuned Bladed Disks: Its Consequences and Its Distribution in Specific Situations
,”
ASME J. Eng. Gas Turbines Power
,
133
(
10
), p.
102502
.10.1115/1.4003021
35.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.10.1016/S0951-8320(03)00058-9
36.
Larrañaga
,
P.
,
Kuijpers
,
C. M. H.
,
Murga
,
R. H.
,
Inza
,
I.
, and
Dizdarevic
,
S.
,
1999
, “
Genetic Algorithms for the Travelling Salesman Problem: A Review of Representations and Operators
,”
Artif. Intell. Rev.
,
13
(
2
), pp.
129
170
.10.1023/A:1006529012972
You do not currently have access to this content.