Abstract

A counterflow diffusion flame for supercritical CO2 combustion is investigated at various CO2 dilution levels and pressures by accounting for real gas effects into both thermal and transport properties. The UCF 1.1 24-species mechanism is used to account the chemistry. The nature of important nonpremixed combustion characteristics such as Prandtl number, thermal diffusivity, Lewis number, stoichiometric scalar dissipation rate, flame thickness, and Damköhler number are investigated with respect to CO2 dilution and pressure. The results show that the aforementioned parameters are influenced by both dilution and pressure; the dilution effect is more dominant. Further, the result shows that Prandtl number increases with CO2 dilution and at 90% CO2 dilution, the difference between the Prandtl number of the inlet jets and the flame is minimal. Also, the common assumption of unity Lewis number in the theory and modeling of nonpremixed combustion does not hold reasonable for sCO2 applications due to large difference of Lewis number across the flame and the Lewis number on the flame drop significantly with an increase in the CO2 dilution. An interesting relation between Lewis number and CO2 dilution is observed. The Lewis number of species drops by 15% when increasing the CO2 dilution by 30%. Increasing the CO2 dilution increases both the flow and chemical timescales; however, chemical timescale increases faster than the flow timescales. The magnitudes of the Damköhler number signify the need to consider finite rate chemistry for sCO2 applications. Further, the Damköhler numbers at 90% sCO2 dilution are very small; hence, laminar flamelet assumptions in turbulent combustion simulations are not physically correct for this application. Also, it is observed that the Damköhler number drops nonlinearly with increasing CO2 dilution in the oxidizer stream. This is a very important observation for the operation of sCO2 combustors. Further, the flame thickness is found to increase with CO2 dilution and reduce with pressure.

References

1.
Allam
,
R.
,
Fetvedt
,
J.
,
Forrest
,
B.
, and
Freed
,
D.
, “
The Oxy-Fuel, Supercritical CO2 Allam Cycle: New Cycle Developments to Produce Even Lower-Cost Electricity From Fossil Fuels Without Atmospheric Emissions
,”
ASME
Paper No. GT2014-26952. 10.1115/GT2014-26952
2.
Vesely
,
L.
,
Manikantachari
,
K. R. V.
,
Vasu
,
S.
,
Kapat
,
J.
,
Dostal
,
V.
, and
Martin
,
S.
,
2019
, “
Effect of Impurities on Compressor and Cooler in Supercritical CO2 Cycles
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p. 012003.10.1115/1.4040581
3.
Smooke
,
M. D.
,
Puri
,
I. K.
, and
Seshadri
,
K.
,
1988
, “
A Comparison Between Numerical Calculations and Experimental Measurements of the Structure of a Counterflow Diffusion Flame Burning Diluted Methane in Diluted Air
,”
Symp. (Int.) Combust.
,
21
(
1
), pp.
1783
1792
.10.1016/S0082-0784(88)80412-0
4.
Jordà Juanós
,
A.
, and
Sirignano
,
W. A.
,
2017
, “
Pressure Effects on Real-Gas Laminar Counterflow
,”
Combust. Flame
,
181
, pp.
54
70
.10.1016/j.combustflame.2017.01.030
5.
Law
,
C. K.
,
2010
,
Combustion Physics
,
Cambridge University Press
, Cambridge, UK.
6.
Ribert
,
G.
,
Zong
,
N.
,
Yang
,
V.
,
Pons
,
L.
,
Darabiha
,
N.
, and
Candel
,
S.
,
2008
, “
Counterflow Diffusion Flames of General Fluids: Oxygen/Hydrogen Mixtures
,”
Combust. Flame
,
154
(
3
), pp.
319
330
.10.1016/j.combustflame.2008.04.023
7.
Huo
,
H.
,
Wang
,
X.
, and
Yang
,
V.
,
2014
, “
A General Study of Counterflow Diffusion Flames at Subcritical and Supercritical Conditions: Oxygen/Hydrogen Mixtures
,”
Combust. Flame
,
161
(
12
), pp.
3040
3050
.10.1016/j.combustflame.2014.06.005
8.
Banuti
,
D. T
,
Ma
,
P. C.
,
Hickey
,
J.-P.
, and
Ihme
,
M.
,
2018
,
Thermodynamic Structure of Supercritical LOX–GH2 Diffusion Flames
, Combust. Flame, 196, pp.
364
376
.10.1016/j.combustflame.2018.06.016
9.
Lutz
,
A. E.
,
Kee
,
R. J.
,
Grcar
,
J. F.
, and
Rupley
,
F. M.
,
1997
,
OPPDIF: A Fortran Program for Computing Opposed-Flow Diffusion Flames
,
Sandia National Labs
,
Livermore, CA
.
10.
Schmitt
,
R. G.
,
Butler
,
P. B.
, and
French
,
N. B.
,
1994
,
CHEMKIN Real Gas: A Fortran Package for Analysis of Thermodynamic Properties and Chemical Kinetics in Nonideal Systems
,
University of Iowa
, Iowa City, Iowa.
11.
Manikantachari
,
K. R. V.
,
Martin
,
S.
,
Bobren-Diaz
,
J. O.
, and
Vasu
,
S.
,
2017
, “
Thermal and Transport Properties for the Simulation of Direct-Fired sCO2 Combustor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p.
121505
.10.1115/1.4037579
12.
Lucas
,
K.
,
1981
, “
Die Druckabhängigkeit Der Viskosität Von Flüssigkeiten—Eine Einfache Abschätzung
,”
Chem. Ing. Tech.
,
53
(
12
), pp.
959
960
.10.1002/cite.330531209
13.
Poling
,
B. E.
,
Prausnitz
,
J. M.
, and
O'Connell
,
J. P.
,
2001
,
The Properties of Gases and Liquids
,
McGraw-Hill
,
New York
.
14.
Stiel
,
L. I.
, and
Thodos
,
G.
,
1964
, “
The Thermal Conductivity of Nonpolar Substances in the Dense Gaseous and Liquid Regions
,”
AIChE J.
,
10
(
1
), pp.
26
30
.10.1002/aic.690100114
15.
Manikantachari
,
K. R. V.
,
Ladislav
,
V.
,
Martin
,
S.
,
Bobren-Diaz
,
J.
, and
Vasu
,
S.
,
2018
, “
Reduced Chemical Kinetic Mechanisms for Oxy/Methane Supercritical CO2 Combustor Simulations
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092202
.10.1115/1.4039746
16.
Panteleev
,
S. V.
,
Masunov
,
A. E.
, and
Vasu
,
S. S.
,
2018
, “
Molecular Dynamics Study of Combustion Reactions in a Supercritical Environment—Part 2: Boxed MD Study of CO + OH → CO2 + H Reaction Kinetics
,”
J. Phys. Chem. A
,
122
(
4
), pp.
897
908
.10.1021/acs.jpca.7b09774
17.
Panteleev
,
S. V.
,
Masunov
,
A. E.
, and
Vasu
,
S. S.
,
2018
, “
Molecular Dynamics Study of Combustion Reactions in Supercritical Environment—Part 3: Boxed MD Study of CH3 + HO2 → CH3O + OH Reaction Kinetics
,”
J. Phys. Chem. A
,
122
(
13
), pp.
3337
3345
.10.1021/acs.jpca.7b12233
18.
Masunov
,
A. E.
,
Atlanov
,
A. A.
, and
Vasu
,
S. S.
,
2016
, “
Molecular Dynamics Study of Combustion Reactions in a Supercritical Environment—Part 1: Carbon Dioxide and Water Force Field Parameters Refitting and Critical Isotherms of Binary Mixtures
,”
Energy Fuels
,
30
(
11
), pp.
9622
9627
.10.1021/acs.energyfuels.6b01927
19.
Masunov
,
A. E.
,
Wait
,
E.
, and
Vasu
,
S. S.
,
2017
, “
Quantum Chemical Study of CH3+ O2 Combustion Reaction System: Catalytic Effects of Additional CO2 Molecule
,”
J. Phys. Chem. A
,
121
(
30
), pp.
5681
5689
.10.1021/acs.jpca.7b04897
20.
Masunov
,
A. E.
,
Wait
,
E. E.
,
Atlanov
,
A. A.
, and
Vasu
,
S. S.
,
2017
, “
Quantum Chemical Study of Supercritical Carbon Dioxide Effects on Combustion Kinetics
,”
J. Phys. Chem. A.
,
121
(
19
), pp.
3728
3735
.10.1021/acs.jpca.7b02638
21.
Shao
,
J.
,
Choudhary
,
R.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
,
Barak
,
S.
, and
Vasu
,
S.
,
2018
, “
Ignition Delay Times of Methane and Hydrogen Highly Diluted in Carbon Dioxide at High Pressures Up to 300 atm
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4555
4562
.10.1016/j.proci.2018.08.002
22.
Sengers
,
J. V.
,
Kayser
,
R.
,
Peters
,
C.
, and
White
,
H.
,
2000
,
Equations of State for Fluids and Fluid Mixtures
,
Elsevier
, Amsterdam, The Netherlands.
23.
Valderrama
,
J. O.
,
2003
, “
The State of the Cubic Equations of State
,”
Ind. Eng. Chem. Res.
,
42
(
8
), pp.
1603
1618
.10.1021/ie020447b
24.
Peng
,
D. Y.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
,
15
(
1
), pp.
59
64
.10.1021/i160057a011
25.
Soave
,
G.
,
1972
, “
Equilibrium Constants From a Modified Redlich-Kwong Equation of State
,”
Chem. Eng. Sci.
,
27
(
6
), pp.
1197
1203
.10.1016/0009-2509(72)80096-4
26.
Miller
,
R. S.
,
Harstad
,
K. G.
, and
Bellan
,
J.
,
2001
, “
Direct Numerical Simulations of Supercritical Fluid Mixing Layers Applied to Heptane–Nitrogen
,”
J. Fluid Mech.
,
436
, pp.
1
39
.10.1017/S0022112001003895
27.
Ihme
,
M.
, and
Pitsch
,
H.
,
2008
, “
Prediction of Extinction and Reignition in Nonpremixed Turbulent Flames Using a Flamelet/Progress Variable Model
,”
Combust. Flame
,
155
(
1–2
), pp.
90
107
.10.1016/j.combustflame.2008.04.015
28.
Manikantachari
,
K. R. V.
,
Martin
,
S.
,
Vesely
,
L.
,
Bobren-Diaz
,
J. O.
,
Vasu
,
S.
, and
Kapat
,
J.
, “
A Strategy of Reactant Mixing in Methane Direct-Fired sCO2 Combustors
,”
ASME
Paper No. GT2018-75547. 10.1115/GT2018-75547
29.
Manikantachari
,
K. R. V.
,
Martin
,
S.
,
Bobren-Diaz
,
J. O.
, and
Vasu
,
S.
,
2018
, “
A Strategy of Mixture Preparation for Methane Direct-Fired sCO2 Combustors
,”
ASME
Paper No. GT2018-75557. 10.1115/GT2018-75557
30.
Delimont
,
J.
,
Andrews
,
N.
, and
Chordia
,
L.
, “
Exploration of Combustor Design for Direct Fired Oxy-Fuel Application in a sCO2 Power Cycle
,”
Global Power and Propulsion Society, Proceedings
, Montreal, QC, Canada, May 7, Paper No. 157.10.5281/zenodo.1341170
31.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
2
nd ed.,
RT Edwards
, Philadelphia, PA.
32.
Hirschfelder
,
J. O.
,
Curtiss
,
C. F.
,
Bird
,
R. B.
, and
Mayer
,
M. G.
,
1954
,
Molecular Theory of Gases and Liquids
,
Wiley
,
New York
.
33.
Pitsch
,
H.
, and
Peters
,
N.
,
1998
, “
A Consistent Flamelet Formulation for Non-Premixed Combustion Considering Differential Diffusion Effects
,”
Combust. Flame
,
114
(
1–2
), pp.
26
40
.10.1016/S0010-2180(97)00278-2
34.
Law
,
C.
,
2006
, “
Propagation, Structure, and Limit Phenomena of Laminar Flames at Elevated Pressures
,”
Combust. Sci. Technol.
,
178
(
1–3
), pp.
335
360
.10.1080/00102200500290690
35.
Martin
,
S.
,
Jemcov
,
A.
, and
de Ruijter
,
B.
, “
Modeling an Enclosed, Turbulent Reacting Methane Jet With the Premixed Conditional Moment Closure Method
,”
ASME
Paper No. GT2013-95092. 10.1115/GT2013-95092
You do not currently have access to this content.