Abstract

Modern aircraft engines combine liquid fuel and air using an intricate flow device with many fuel and air flow passages. To date, the process by which the fuel atomizes within this swirler set has not been examined directly due to optical access limitations. In this work, high-speed X-ray phase-contrast imaging of a liquid spray inside a gas turbine engine swirler geometry is presented. Measurements were carried out at the 7-BM beamline of the Advanced Photon Source at Argonne National Laboratory using the high-energy broadband X-ray beam. The synchrotron X-ray source provides the necessary photon energy and flux to capture time-resolved fluid phenomena within the confines of the relevant geometry while liquid and air are flowing. Spray nozzle hardware and geometries were provided by the National Jet Fuels Combustion Program (NJFCP), allowing for characterization of the spray using a commercially relevant configuration. Modified swirlers were three-dimensional printed with acrylic to improve imaging access while maintaining influential internal features. Water was used as a surrogate fluid for these studies to demonstrate the visualization capabilities. The experiments were conducted at atmospheric exit pressure conditions with a pressure drop of 6% across the swirler. High-speed imaging of the pilot spray cone revealed sheet breakup several millimeters downstream of the orifice exit, upon interaction with the radial assist air flow. These droplets and ligaments were observed to impinge on the inner filming surface of the swirler and flow toward the exit while developing a tangential flow. Under these conditions, the liquid film grows up to several hundred microns in thickness on the filming surface, and subsequently forms ligaments up to several millimeters in length before breaking up. This work demonstrates the capability of X-ray diagnostics in visualizing liquid flows within solid geometries of technical relevance. Furthermore, the spatial quantification of filming flows and liquid interaction with the swirler air provides validation data for modeling of the multiphase flows and surface interactions within the swirler.

References

1.
Benjamin
,
M.
,
2000
, “
Fuel Atomization for Next-Generation Gas Turbine Combustors
,”
Atomization Sprays
,
10
(
3–5
), pp.
427
438
.10.1615/AtomizSpr.v10.i3-5.100
2.
Rizk
,
N.
, and
Lefebvre
,
A. H.
,
1985
, “
Internal Flow Characteristics of Simplex Swirl Atomizers
,”
J. Propul. Power
,
1
(
3
), pp.
193
199
.10.2514/3.22780
3.
Amini
,
G.
,
2016
, “
Liquid Flow in a Simplex Swirl Nozzle
,”
Int. J. Multiphase Flow
,
79
, pp.
225
235
.10.1016/j.ijmultiphaseflow.2015.09.004
4.
Lefebvre
,
A. H.
,
2000
, “
Fifty Years of Gas Turbine Fuel Injection
,”
Atomization Sprays
,
10
(
3–5
), pp.
251
276
.10.1615/AtomizSpr.v10.i3-5.40
5.
Lefebvre
,
A. H.
, and
McDonell
,
V. G.
,
2017
,
Atomization and Sprays
,
CRC Press
,
Boca Raton, FL
.
6.
Sirignano
,
W. A.
,
2010
,
Fluid Dynamics and Transport of Droplets and Sprays
,
Cambridge University Press
,
Cambridge, UK
.
7.
Cohen
,
J. M.
, and
Rosfjord
,
T. J.
,
1993
, “
Influences on the Sprays Formed by High-Shear Fuel Nozzle/Swirler Assemblies
,”
J. Propul. Power
,
9
(
1
), pp.
16
27
.10.2514/3.51351
8.
McDonell
,
V.
,
Arellano
,
L.
,
Lee
,
S.
, and
Samuelsen
,
G.
,
1996
, “
Effect of Hardware Alignment on Fuel Distribution and Combustion Performance for a Production Engine Fuelinjection Assembly
,”
Proc. Combust. Inst.
,
26
(
2
), pp.
2725
2732
.10.1016/S0082-0784(96)80109-3
9.
Ibrahim
,
M.
,
Sanders
,
T.
,
Yarwood
,
D.
,
Moawed
,
M.
,
Steinthorsson
,
E.
, and
Benjamin
,
M.
,
1998
, “
Spray Characteristics of an Airblast-Simplex Nozzle for Liquid-Fueled Gas Turbine Combustors
,”
ASME
Paper No. 98-GT-517.10.1115/98-GT-517
10.
Colket
,
M.
,
Heyne
,
J.
,
Rumizen
,
M.
,
Gupta
,
M.
,
Edwards
,
T.
,
Roquemore
,
W. M.
,
Andac
,
G.
,
Boehm
,
R.
,
Lovett
,
J.
,
Williams
,
R.
,
Condevaux
,
J.
,
Turner
,
D.
,
Rizk
,
N.
,
Tishkoff
,
J.
,
Li
,
C.
,
Moder
,
J.
,
Friend
,
D.
, and
Sankaran
,
V.
,
2017
, “
Overview of the National Jet Fuels Combustion Program
,”
AIAA J.
,
55
(
4
), pp.
1087
1104
.10.2514/1.J055361
11.
Edwards
,
J. T.
,
2017
, “
Reference Jet Fuels for Combustion Testing
,”
AIA
Paper No. 2017-0146.10.2514/6.2017-0146
12.
Rock
,
N.
,
Chterev
,
I.
,
Emerson
,
B.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2017
, “
Blowout Sensitivities in a Liquid Fueled Combustor: Fuel Composition and Preheat Temperature Effects
,”
ASME
Paper No. GT2017-63305.10.1115/GT2017-63305
13.
Stouffer
,
S.
,
Hendershott
,
T.
,
Monfort
,
J. R.
,
Diemer
,
J.
,
Corporan
,
E.
,
Wrzesinski
,
P.
, and
Caswell
,
A. W.
,
2017
, “
Lean Blowout and Ignition Characteristics of Conventional and Surrogate Fuels Measured in a Swirl Stabilized Combustor
,”
AIAA
Paper No. 2017-1954.10.2514/6.2017-1954
14.
Sforzo
,
B.
,
Dao
,
H.
,
Wei
,
S.
, and
Seitzman
,
J.
,
2016
, “
Liquid Fuel Composition Effects on Forced, Nonpremixed Ignition
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
031509
.10.1115/1.4034502
15.
Wei
,
S.
,
Sforzo
,
B.
, and
Seitzman
,
J.
,
2018
, “
Fuel Composition Effects on Forced Ignition of Liquid Fuel Sprays
,”
ASME
Paper No. GT2018-77196.10.1115/GT2018-77196
16.
Mansour
,
A.
,
Benjamin
,
M.
, and
Steinthorsson
,
E.
,
2000
, “
A New Hybrid Air Blast Nozzle for Advanced Gas Turbine Combustors
,”
ASME
Paper No. 2000-GT-0117.10.1115/2000-GT-0117
17.
Mansour
,
A. B.
,
Benjamin
,
M. A.
,
Burke
,
T. A.
,
Odar
,
A. M.
, and
Savel
,
B. W.
,
2003
, “
Hybrid Atomizing Fuel Nozzle
,” U.S. Patent No. 6,547,163.
18.
Corber
,
A.
,
Rizk
,
N.
, and
Chishty
,
W. A.
,
2018
, “
Experimental and Analytical Characterization of Alternative Aviation Fuel Sprays Under Realistic Operating Conditions
,”
ASME
Paper No. GT2018-75574.10.1115/GT2018-75574
19.
Buschhagen
,
T.
,
Zhang
,
R. Z.
,
Bokhart
,
A. J.
,
Gejji
,
R. M.
,
Naik
,
S. V.
,
Lucht
,
R. P.
,
Gore
,
J. P.
,
Sojka
,
P. E.
,
Slabaugh
,
C. D.
, and
Meyer
,
S.
,
2016
, “
Effect of Aviation Fuel Type and Fuel Injection Conditions on Non-Reacting Spray Characteristics of a Hybrid Airblast Fuel Injector
,”
AIAA
Paper No. 2016-1154.10.1115/2016-1154
20.
Li
,
X.
,
Soteriou
,
M. C.
,
Kim
,
W.
, and
Cohen
,
J. M.
,
2014
, “
High Fidelity Simulation of the Spray Generated by a Realistic Swirling Flow Injector
,”
ASME J. Eng. Gas Turbines Power
,
136
(
7
), p.
071503
.10.1115/1.4026531
21.
Esclapez
,
L.
,
Ma
,
P. C.
,
Mayhew
,
E.
,
Xu
,
R.
,
Stouffer
,
S.
,
Lee
,
T.
,
Wang
,
H.
, and
Ihme
,
M.
,
2017
, “
Fuel Effects on Lean Blow-Out in a Realistic Gas Turbine Combustor
,”
Combust. Flame
,
181
, pp.
82
99
.10.1016/j.combustflame.2017.02.035
22.
Hasti
,
V. R.
,
Kundu
,
P.
,
Kumar
,
G.
,
Drennan
,
S. A.
,
Som
,
S.
,
Won
,
S. H.
,
Dryer
,
F. L.
, and
Gore
,
J. P.
,
2018
, “
Lean Blow-Out (LBO) Computations in a Gas Turbine Combustor
,”
AIA
Paper No. 2018-4958.10.2514/6.2018-4958
23.
Benjamin
,
M.
,
Jensen
,
R. J.
, and
Arienti
,
M.
,
2010
, “
Review of Atomization: Current Knowledge and Future Requirements for Propulsion Combustors
,”
Atomization Sprays
,
20
(
6
), pp.
485
512
.10.1615/AtomizSpr.v20.i6.20
24.
Linne
,
M.
,
2013
, “
Imaging in the Optically Dense Regions of a Spray: A Review of Developing Techniques
,”
Prog. Energy Combust. Sci.
,
39
(
5
), pp.
403
440
.10.1016/j.pecs.2013.06.001
25.
Shanmugadas
,
K. P.
,
Chakravarthy
,
S. R.
,
Chiranthan
,
R. N.
,
Sekar
,
J.
, and
Krishnaswami
,
S.
,
2018
, “
Characterization of Wall Filming and Atomization Inside a Gas-Turbine Swirl Injector
,”
Exp. Fluids
,
59
(
10
), p.
151
.10.1007/s00348-018-2606-0
26.
McDonell
,
V. G.
, and
Samuelsen
,
G.
,
2000
, “
Measurement of Fuel Mixing and Transport Processes in Gas Turbine Combustion
,”
Meas. Sci. Technol.
,
11
(
7
), p.
870
.10.1088/0957-0233/11/7/304
27.
Kastengren
,
A.
, and
Powell
,
C. F.
,
2014
, “
Synchrotron X-Ray Techniques for Fluid Dynamics
,”
Exp. Fluids
,
55
(
3
), p.
1686
.10.1007/s00348-014-1686-8
28.
Kastengren
,
A. L.
,
2018
, “
High-Speed Radiography and Visible Light Extinction of a Pressure-Swirl Atomizer
,”
Atomization Sprays
,
28
(
1
), pp.
47
63
.10.1615/AtomizSpr.2018021469
29.
Wang
,
Y. J.
,
Im
,
K.-S.
,
Fezzaa
,
K.
,
Lee
,
W. K.
,
Wang
,
J.
,
Micheli
,
P.
, and
Laub
,
C.
,
2006
, “
Quantitative X-Ray Phase-Contrast Imaging of Air-Assisted Water Sprays With High Weber Numbers
,”
Appl. Phys. Lett.
,
89
(
15
), p.
151913
.10.1063/1.2358322
30.
Li
,
D.
,
Bothell
,
J.
,
Morgan
,
T.
,
Heindel
,
T.
,
Aliseda
,
A.
,
Machicoane
,
N.
, and
Kastengren
,
A.
,
2018
, “
Quantitative Analysis of an Airblast Atomizer in the Near-Field Region Using Broadband and Narrowband X-Ray Measurements
,” ICLASS 2018, Chicago, IL, July 22–26, p.
141
.
31.
Halls
,
B. R.
,
Radke
,
C. D.
,
Reuter
,
B. J.
,
Kastengren
,
A. L.
,
Gord
,
J. R.
, and
Meyer
,
T. R.
,
2017
, “
High-Speed, Two-Dimensional Synchrotron White-Beam X-Ray Radiography of Spray Breakup and Atomization
,”
Opt. Express
,
25
(
2
), pp.
1605
1617
.10.1364/OE.25.001605
32.
Linne
,
M.
,
2012
, “
Analysis of X-Ray Phase Contrast Imaging in Atomizing Sprays
,”
Exp. Fluids
,
52
(
5
), pp.
1201
1218
.10.1007/s00348-011-1251-7
33.
Kastengren
,
A.
,
Powell
,
C. F.
,
Arms
,
D.
,
Dufresne
,
E. M.
,
Gibson
,
H.
, and
Wang
,
J.
,
2012
, “
The 7BM Beamline at the APS: A Facility for Time-Resolved Fluid Dynamics Measurements
,”
J. Synchrotron Radiat.
,
19
(
4
), pp.
654
657
.10.1107/S0909049512016883
34.
Hasti
,
V. R.
,
Kundu
,
P.
,
Kumar
,
G.
,
Drennan
,
S. A.
,
Som
,
S.
, and
Gore
,
J. P.
,
2018
, “
Numerical Simulation of Flow Distribution in a Realistic Gas Turbine Combustor
,”
AIA
Paper No. 2018-4956.10.2514/6.2018-4956
35.
Lin
,
K.-C.
,
Carter
,
C. D.
,
Kastengren
,
A. L.
, and
Fezzaa
,
K.
, 2012, “Exploration of Aerated-Jets Using X-Ray Phase Contrast Imaging and X-Ray Radiography,”
12th Triennial International Conference Atomization and Spray Systems
, Heidelberg, Germany, Sept. 2–6, p. 121.http://www.ilasseurope.org/ICLASS/iclass2012_Heidelberg/Contributions/Paper-pdfs/Contribution1121_b.pdf
36.
Li
,
D.
,
Bothell
,
J.
,
Morgan
,
T.
,
Heindel
,
T.
,
Aliseda
,
A.
,
Machicoane
,
N.
, and
Kastengren
,
A.
,
2017
, “
Video: High-Speed X-Ray Imaging of an Airblast Atomizer at the Nozzle Exit
,”
70th Annual Meeting of the APS Division of Fluid Dynamics—Gallery of Fluid Motion
, Denver, CO, Nov.
19
21
.10.1103/APS.DFD.GFM.V0026
37.
Heindel
,
T.
,
Li
,
D.
,
Morgan
,
T.
,
Bothell
,
J.
,
Aliseda
,
A.
,
Machicoane
,
N.
, and
Kastengren
,
A.
,
2017
, “
X-Ray Observations in the Spray Near-Field Using Synchrotron X-Rays
,” ILASS-Americas 2017, Atlanta, GA, May 15–18, p.
27
.
You do not currently have access to this content.