Abstract

This paper describes a large eddy simulation (LES) conducted for a nonadiabatic rotating cavity with a radial inflow introduced from the shroud. The dimensionless mass flowrate of the radial inflow is Cw = 3500 and the rotational Reynolds number, based on the cavity outer radius, is equal to Reθ=1.2×106. The time-averaged local Nusselt number on the heated wall is compared with the experimental data available from the literature, and with those derived from the solution of two unsteady Reynolds-averaged Navier–Stokes (URANS) eddy viscosity models, namely, the Spalart–Allmaras and the kω shear stress transport (SST) model. It is shown that the Nusselt number is underpredicted in the lower part of the disk and overpredicted in the outer region by both URANS models, whereas the LES provides a much better agreement with the measurements. The behavior results primarily from a different flow structure in the source region, which, in the LES, is found to be considerably more extended and show localized buoyancy phenomena that the URANS models investigated do not capture.

References

1.
Childs
,
P. R. N.
,
2011
,
Rotating Flow
,
Elsevier
,
Amsterdam, The Netherlands
.
2.
Kilfoil
,
A. S. R.
, and
Chew
,
J. W.
,
2009
, “
Modelling of Buoyancy-Affected Flow in Co-Rotating Disc Cavities
,”
ASME
Paper No. GT2009-59214.10.1115/GT2009-59214
3.
Farthing
,
P. R.
,
Long
,
C. A.
,
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1992
, “
Rotating Cavity With Axial Throughflow of Cooling Air: Flow Structure
,”
ASME J. Turbomach.
,
114
(
1
), pp.
237
246
.10.1115/1.2927991
4.
Bohn
,
D.
,
Ren
,
J.
, and
Tuemmers
,
C.
,
2006
, “
Investigation of the Unstable Flow Structure in a Rotating Cavity
,”
ASME
Paper No. GT2006-90494.10.1115/GT2006-90494
5.
Günther
,
A.
,
Uffrecht
,
W.
, and
Odenbach
,
S.
,
2012
, “
Local Measurements of Disk Heat Transfer in Heated Rotating Cavities for Several Flow Regimes
,”
ASME J. Turbomach.
,
134
(
5
), p.
051016
.10.1115/1.4003965
6.
Tian
,
S.
,
Tao
,
Z.
,
Ding
,
S.
, and
Xu
,
G.
,
2004
, “
Investigation of Flow and Heat Transfer in a Rotating Cavity With Axial Throughflow of Cooling Air
,”
ASME
Paper No. GT2004-53525.10.1115/GT2004-53525
7.
Sun
,
Z.
,
Lindblad
,
K.
,
Chew
,
J. W.
, and
Young
,
C.
,
2007
, “
Les and Rans Investigations Into Buoyancy-Affected Convection in a Rotating Cavity With a Central Axial Throughflow
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
318
325
.10.1115/1.2364192
8.
Puttock-Brown
,
M. R.
, and
Rose
,
M. G.
,
2018
, “
Formation and Evolution of Rayleigh-Bénard Streaks in Rotating Cavities
,”
ASME
Paper No. GT2018-75497.10.1115/GT2018-75497
9.
Owen
,
M. J.
,
Abrahamsson
,
H.
, and
Lindblad
,
K.
,
2007
, “
Buoyancy-Induced Flow in Open Rotating Cavities
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
893
900
.10.1115/1.2719260
10.
Batchelor
,
G. K.
,
1967
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
11.
Firouzian
,
M.
,
Owen
,
J. M.
,
Pincombe
,
J. R.
, and
Rogers
,
R. H.
,
1986
, “
Flow and Heat Transfer in a Rotating Cylindrical Cavity With a Radial Inflow of Fluid—Part 2: Velocity, Pressure and Heat Transfer Measurements
,”
Int. J. Heat Fluid Flow
,
7
(
1
), pp.
21
27
.10.1016/0142-727X(86)90037-8
12.
Farthing
,
P. R.
,
1988
, “
The Effect of Geometry of Flow and Heat Transfer in a Rotating Cavity
,” Ph.D. thesis, University of Sussex, Brighton, UK.
13.
Morse
,
A. P.
,
1988
, “
Numerical Prediction of Turbulent Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
110
(
2
), pp.
202
211
.10.1115/1.3262181
14.
Atkins
,
N. R.
,
2013
, “
Investigation of a Radial-Inflow Bleed as a Potential for Compressor Clearance Control
,”
ASME
Paper No. GT2013-95768.10.1115/GT2013-95768
15.
Sun
,
Z.
,
Amirante
,
D.
,
Chew
,
J. W.
, and
Hills
,
N. J.
,
2016
, “
Coupled Aerothermal Modeling of a Rotating Cavity With Radial Inflow
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032505
.10.1115/1.4031387
16.
Amirante
,
D.
,
Sun
,
Z.
,
Chew
,
J. W.
,
Hills
,
N. J.
, and
Atkins
,
N. R.
,
2016
, “
Modeling of Compressor Drum Cavities With Radial Inflow
,”
ASME
Paper No. GT2016-56505.10.1115/GT2016-56505
17.
Kumar
,
V.
,
Chew
,
J. W.
, and
Hills
,
N. J.
,
2012
, “
Rotating Flow and Heat Transfer in Cylindrical Cavities With Radial Inflow
,”
ASME J. Eng. Gas Turbines Power
,
135
(
3
), p.
032502
.10.1115/1.4007826
18.
Farthing
,
P. R.
,
Long
,
C. A.
, and
Rogers
,
R. H.
,
1991
, “
Measurements and Prediction of Heat Transfer From Compressor Discs With a Radial Inflow of Cooling Air
,”
ASME
Paper No. 91-GT-053.10.1115/91-GT-053
19.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
20.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
30th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 6–9
, pp.
1
22
.
21.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1995
,
Flow and Heat Transfer in Rotating Disc Systems, Vol. 2: Rotating Cavities
,
Research Studies Press
,
Taunton, UK
.
22.
Onori
,
M.
,
Amirante
,
D.
,
Hills
,
N. J.
, and
Chew
,
J. W.
,
2017
, “
Les Validation for a Rotating Cylindrical Cavity With Radial Inflow
,”
ASME
Paper No. GT2016-56393.10.1115/GT2016-56393
23.
Owen
,
J. M.
,
Pincombe
,
J. R.
, and
Rogers
,
R. H.
,
1985
, “
Source-Sink Flow Inside a Rotating Cylindrical Cavity
,”
J. Fluid Mech.
,
155
, pp.
233
265
.10.1017/S0022112085001793
24.
Moinier
,
P.
,
1999
, “
Algorithm Developments for an Unstructured Viscous Flow Solver
,” Ph.D. thesis, Oxford University, Oxford, UK.
25.
Amirante
,
D.
, and
Hills
,
N. J.
,
2015
, “
Large-Eddy Simulations of Wall Bounded Turbulent Flows Using Unstructured Linear Reconstruction Techniques
,”
ASME J. Turbomach.
,
137
(
5
), p.
051006
.10.1115/1.4028549
26.
Hirsch
,
C.
,
1990
,
Numerical Computation of Internal and External Flows
,
Wiley
,
Chichester, UK
.
27.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
28.
Dacles-Mariani
,
J.
,
Zilliac
,
G. G.
,
Chow
,
J. S.
, and
Bradshaw
,
P.
,
1995
, “
Numerical/Experimental Study of a Wingtip Vortex in the Near Field
,”
AIAA J.
,
33
(
9
), pp.
1561
1568
.10.2514/3.12826
29.
Poinsot
,
T. J.
, and
Lele
,
S. K.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.10.1016/0021-9991(92)90046-2
30.
Davidson
,
L.
,
2009
, “
Large Eddy Simulations: How to Evaluate Resolution
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
1016
1025
.10.1016/j.ijheatfluidflow.2009.06.006
31.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Canada, CA
.
32.
Hellsten
,
A.
,
1998
, “
Some Improvements in Menter's k-Omega SST Turbulence Model
,”
AIAA
Paper No. 98-2554.10.2514/6.98-2554
You do not currently have access to this content.