To understand the physics of volcanic ash impact on gas turbine hot-components and develop much-needed tools for engine design and fleet management, the behaviors of volcanic ash in a gas turbine combustor and nozzle guide vanes (NGV) have been numerically investigated. High-fidelity numerical models are generated, and volcanic ash sample, physical, and thermal properties are identified. A simple critical particle viscosity—critical wall temperature model is proposed and implemented in all simulations to account for ash particles bouncing off or sticking on metal walls. The results indicate that due to the particle inertia and combustor geometry, the volcanic ash concentration in the NGV cooling passage generally increases with ash size and density, and is less sensitive to inlet velocity. It can reach three times as high as that at the air inlet for the engine conditions and ash properties investigated. More importantly, a large number of the ash particles entering the NGV cooling chamber are trapped in the cooling flow passage for all four turbine inlet temperature conditions. This may reveal another volcanic ash damage mechanism originated from engine cooling flow passage. Finally, some suggestions are recommended for further research and development in this challenging field. To the best of our knowledge, it is the first study on detailed ash behaviors inside practical gas turbine hot-components in the open literature.

References

2.
Dunn
,
M. G.
,
2012
, “
Operation of Gas Turbine Engines in an Environment Contaminated With Volcanic Ash
,”
ASME J. Turbomach.
,
134
(
5
), p.
051001
.
3.
Cosher
,
C. R.
, and
Dunn
,
M. G.
,
2016
, “
Comparison of the Sensitivity to Foreign Particle Ingestion of the GE-F101 and P/W-F100 Engines to Modern Aircraft Engines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
121201
.
4.
Davison
,
C. R.
, and
Rutke
,
T. A.
,
2014
, “
Assessment and Characterization of Volcanic Ash Threat to Gas Turbine Engine Performance
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p.
081201
.
5.
Mechnich
,
P.
,
Braue
,
W.
, and
Schulz
,
U.
,
2011
, “
High-Temperature Corrosion of EB-PVD Yttria Partially Stabilized Zirconia Thermal Barrier Coatings With an Artificial Volcanic Ash Overlay
,”
J. Am. Ceram. Soc.
,
94
(
3
), pp.
925
931
.
6.
Song
,
W.
,
Lavalle
,
Y.
,
Hess
,
K. U.
,
Kueppers
,
U.
,
Cimarelli
,
C.
, and
Dingwell
,
D. B.
,
2016
, “
Volcanic Ash Melting Under Conditions Relevant to Ash Turbine Interactions
,”
Nat. Commun.
,
7
, p. 10795.
7.
Kim
,
J.
,
Dunn
,
M. G.
,
Baran
,
A. J.
,
Wade
,
D. P.
, and
Tremba
,
E. L.
,
1993
, “
Deposition of Volcanic Materials in the Hot Sections of Two Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
641
651
.
8.
Padova
,
C.
,
Dunn
,
M. G.
, and
Moller
,
J. C.
,
1987
, “Dust Phenomenology Testing in the Hot-section Simulator of an Allison T56 Gas Turbine,” Calspan, Buffalo, NY, Report No. 7389-A-1.
9.
Dunn
,
M. G.
,
Padova
,
C.
,
Moller
,
J. E.
, and
Adams
,
R. E.
,
1987
, “
Performance Deterioration of a Turbofan and a Turbojet Engine Upon Exposure to a Dust Environment
,”
ASME J. Eng. Gas Turbines Power
,
109
(
3
), pp.
336
343
.
10.
Moller
,
J. C.
, and
Dunn
,
M. G.
,
1989
, “Dust and Smoke Phenomenology Testing in a Gas Turbine Hot Section Simulator,” Calspan Advanced Technology Center, Buffalo, NY, Technical Report No. DNA-TR-90-72-V2.
11.
Dunn
,
M. G.
,
Padova
,
C.
, and
Adam
,
R. M.
,
1983
, “Operation of Gas Turbine Engines in Dust Environments,” Calspan Advanced Technology Center, Buffalo, NY, Technical Report No. DNA-001-83-0-0182.
12.
Kim
,
J.
,
Dunn
,
M. G.
, and
Baran
,
A. J.
,
1991
, “The 'Most Probable' Dust Blend and Its Response in the F-100 Hot Section Test System (HSTS),” Defense Nuclear Agency, Fort Belvoir, VA, Technical Report No. DNA-TR-91-160.
13.
Jiang
,
L. Y.
,
Wu
,
X.
, and
Zhong Zhang
,
Z.
,
2014
, “
Conjugate Heat Transfer of an Internally Air-Cooled Nozzle Guide Vane and Shrouds
,”
Adv. Mech. Eng.
,
2014
, p.
146523
.
14.
Jiang
,
L. Y.
, and
Andrew Corber
,
P.
,
2014
, “Air Distribution over a Combustor Liner,”
ASME
Paper No. GT-2014-25405.
15.
Stiesch
,
G.
,
2003
,
Modeling Engine Spray and Combustion Processes
,
Springer
,
New York
.
16.
Fluent,
2016
, “Fluent 18 Documentation,” Fluent, Lebanon, NH, Document No. 03766.
17.
Jiang
,
L. Y.
,
2012
, “A Critical Evaluation of Turbulence Modeling in a Model Combustor,”
ASME
Paper No. GT2012-68414.
18.
Kim
,
O. V.
, and
Dunn
,
P. F.
,
2007
, “
A Microsphere-Surface Impact Model for Implementation in Computational Fluid Dynamics
,”
Aerosol Sci.
,
38
(
5
), pp.
532
549
.
19.
Reagle
,
C. J.
,
Delimont
,
J. M.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2014
, “
Study of Microparticle Rebound Characteristics Under High Temperature Conditions
,”
ASME J. Eng. Gas Turbines Power
,
136
(1), p.
011501
.
20.
Ai
,
W.
, and
Fletcher
,
T. H.
,
2009
, “Computational Analysis of Conjugate Heat Transfer and Particulate Deposition on a High Pressure Turbine Vane,”
ASME
No. GT2009-59573.
21.
El-Batsh
,
H.
, and
Haselbacher
,
H.
,
2002
, “Numerical Investigation of the Effect of Ash Particle Deposition on the Flow Field Through Turbine Cascades,”
ASME
Paper No. GT-2002-30600.
22.
Brach
,
R.
, and
Dunn
,
P.
,
1992
, “
A Mathematical Model of the Impact and Adhesion of Microspheres
,”
Aerosol Sci. Technol.
,
16
(
1
), pp.
51
64
.
23.
Soltani
,
M.
, and
Ahmadi
,
G.
,
1994
, “
On Particle Adhesion and Removal Mechanisms in Turbulent Flows
,”
J. Adhes. Sci. Technol.
,
8
(
7
), pp.
763
785
.
24.
Barker
,
B.
,
Casaday
,
B.
,
Shankara
,
P.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2013
, “
Coal Ash Deposition on Nozzle Guide Vanes—Part II: Computational Modeling
,”
ASME J. Turbomach.
,
135
(1), p.
011015
.
25.
Tafti
,
D. K.
, and
Sreedharan
,
S. S.
,
2010
, “Composition Dependent Model for the Prediction of Syngas Ash Deposition With Application to a Leading Edge Turbine Vane,”
ASME
Paper No. GT2010-23655.
26.
Prenter
,
R.
,
Whitaker
,
S. M.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2014
, “The Effects of Slot Film Cooling on Deposition on a Nozzle Guide Vane,”
ASME
Paper No. GT2014-27171.
27.
N'dala
,
I.
,
Cambier
,
F.
,
Anseau
,
M. R.
, and
Urbain
,
G.
,
1984
, “
Viscosity of Liquid Feldspars—Part I: Viscosity Measurements
,”
Trans. J. Br. Ceram. Soc.
,
83
, pp.
108
112
.
28.
Ebert
,
H. P.
,
Hemberger
,
F.
,
Fricke
,
J.
,
Büttner
,
R.
,
Bez
,
S.
, and
Zimanowski
,
B.
,
2002
, “
Thermo-Physical Properties of a Volcanic Rock Material
,”
High Temp. High Pressures
,
34
, pp.
561
568
.
29.
Lekki
,
J.
,
Lyall
,
E.
,
Guffanti
,
M.
,
Fisher
,
J.
,
Erlund
,
B.
,
Clarkson
,
R.
, and
van de Wall
,
A.
,
2013
, “Multi-Partner Experiment to Test Volcanic-Ash Ingestion by a Jet Engine,” National Aeronautics and Space Administration, Washington, DC, Report No.
STO-MP-AVT-272
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20130013612.pdf
30.
Giordano
,
D.
,
Russell
,
J. R.
, and
Dingwell
,
D. B.
,
2008
, “
Viscosity of Magmatic Liquids: A Model
,”
Earth Planet. Sci. Lett.
,
271
(
1–4
), pp.
123
134
.
31.
Riley
,
C. M.
,
Rose
,
W. I.
, and
Bluth
,
G. J. S.
,
2003
, “
Quantitative Shape Measurements of Distal Volcanic Ash
,”
J. Geophys. Res.
,
108
(
B10
), p.
2504
.
32.
De Giorgi
,
M. G.
,
Campilongo
,
S.
, and
Ficarella
,
A.
,
2013
, “Experimental and Numerical Study of Particle Ingestion in Aircraft Engine,”
ASME
Paper No. GT2013-95662.
33.
Oechsle
,
V. L.
,
Ross
,
P. T.
, and
Mongia
,
H. C.
,
1987
, “High Density Fuel Effects on Gas Turbine Engines,”
AIAA
Paper No. AIAA-87-1829.
34.
Jiang
,
L. Y.
, and
Corber
,
A.
,
2011
, “Benchmark Modeling of T56 Gas Turbine Combustor—Phase I, CFD Model, Flow Features, Air Distribution and Combustor Can Temperature Distribution,” Aerospace—National Research Council, Ottawa, ON, Canada, Report No. LTR-GTL-2010-0088.
35.
Rizk
,
N. K.
,
Oechsle
,
V. L.
,
Ross
,
P. T.
, and
Mongia
,
H. C.
,
1988
, “High Density Fuel Effects,” Wright-Patterson Air Force Base, Aero Propulsion Laboratory, Dayton, OH, Technical Report No.
AFWAL-TR-88-2046
.http://www.dtic.mil/docs/citations/ADA202426
36.
Clarkson
,
R.
,
2015
, “Volcanic Ash and Gas Turbine Aero Engines—Update,”
WMO VAAC Best Practice Workshop
, London, May 5–8.https://www.wmo.int/aemp/sites/default/files/RR_Volcanic_Ash_and_Gas_Turbine_Aero_Engines_Update.pdf
You do not currently have access to this content.