Formation of thin liquid films on steam turbine airfoils, particularly in last stages of low-pressure (LP) steam turbines, and their breakup into coarse droplets is of paramount importance to assess erosion of last stage rotor blades given by the impact of those droplets. An approach for this problem is presented in this paper: this includes deposition of liquid water mass and momentum, film mass and momentum conservation, trailing edge breakup and droplets Lagrangian tracking accounting for inertia and drag. The use of thickness-averaged two-dimensional (2D) equations in local body-fitted coordinates, derived from Navier–Stokes equations, makes the approach suitable for arbitrary curved blades and integration with three-dimensional (3D) computational fluid dynamics (CFD) simulations. The model is implemented in the in-house solver MULTI3, which uses Reynolds-averaged Navier–Stokes equations κω model and steam tables for the steam phase and was previously modified to run on multi-GPU architecture. The method is applied to the last stage of a steam turbine in full and part load operating conditions to validate the model by comparison with time-averaged data from experiments conducted in the same conditions. Droplets impact pattern on rotor blades is also predicted and shown.

References

1.
Crane
,
R.
,
2004
, “
Droplet Deposition in Steam Turbines
,”
Proc. Inst. Mech. Eng., Part C
,
218
(
8
), pp.
859
870
.
2.
Bosdas
,
I.
,
Mansour
,
M.
,
Kalfas
,
A. I.
,
Abhari
,
R. S.
, and
Senoo
,
S.
,
2016
, “
Unsteady Flow Field and Coarse Droplet Measurements in the Last Stage of a Low Pressure Steam Turbine With Supersonic Airfoils Near the Blade Tip
,”
ASME
Paper No. GT2016-57753.
3.
Haraguchi
,
M.
,
Nakamura
,
T.
,
Yoda
,
H.
,
Kudo
,
T.
, and
Senoo
,
S.
,
2013
, “
Nuclear Steam Turbine With 60 inch Last Stage Blade
,”
ASME
Paper No. ICONE21-16600.
4.
Shibukawa
,
N.
,
Fukushima
,
T.
,
Iwasaki
,
Y.
,
Takada
,
Y.
,
Murakami
,
I.
, and
Suzuki
,
T.
,
2015
, “
An Experimental Investigation of the Influence of Flash-Back Flow on Last Three Stages of Low Pressure Steam Turbines
,”
ASME J. Eng. Gas Turbines Power
,
137
(
5
), p.
052601
.
5.
Arienti
,
M.
,
Wang
,
L.
,
Corn
,
M.
,
Li
,
X.
,
Soteriou
,
M.
,
Shedd
,
T.
, and
Herrmann
,
M.
,
2011
, “
Modeling Wall Film Formation and Breakup Using an Integrated Interface-Tracking/Discrete-Phase Approach
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), p.
031501
.
6.
Simon
,
A.
,
Marcelet
,
M.
,
Hérard
,
J.-M.
,
Dorey
,
J.-M.
, and
Lance
,
M.
,
2016
, “
A Model for Liquid Films in Steam Turbines and Preliminary Validations
,”
ASME
Paper No. GT2016-56148.
7.
Nikolaidis
,
T.
,
Pilidis
,
P.
,
Teixeira
,
J.
, and
Pachidis
,
V.
,
2008
, “
Water Film Formation on an Axial Flow Compressor Rotor Blade
,”
ASME
Paper No. GT2008-50137.
8.
Schuster
,
S.
,
Benra
,
F.-K.
,
Dohmen
,
H. J.
,
König
,
S.
, and
Martens
,
U.
,
2014
, “
Sensitivity Analysis of Condensation Model Constants on Calculated Liquid Film Motion in Radial Turbines
,”
ASME
Paper No. GT2014-25652.
9.
Fendler
,
Y.
,
Dorey
,
J.-M.
,
Stanciu
,
M.
,
Lance
,
M.
, and
Léonard
,
O.
,
2012
, “
Developments for Modeling of Droplets Deposition and Liquid Film Flow in a Throughflow Code for Steam Turbines
,”
ASME
Paper No. GT2012-68968.
10.
Malamatenios
,
C.
,
Giannakoglou
,
K.
, and
Papailiou
,
K.
,
1994
, “
A Coupled Two-Phase Shear Layer/Liquid Film Calculation Method Formulation of the Physical Problem and Solution Algorithm
,”
Int. J. Multiphase Flow
,
20
(
3
), pp.
593
612
.
11.
Hammitt
,
F. G.
, Krzeczkowski, S., and Krzyżanowski, J.,
1981
, “
Liquid Film and Droplet Stability Consideration as Applied to Wet Steam Flow
,”
Forsch. Ingenieurwes. A
,
47
(
1
), pp.
1
14
.
12.
Zhang
,
Q.
,
Liu
,
H.
,
Ma
,
Z.
, and
Xiao
,
Z.
,
2016
, “
Preferential Concentration of Heavy Particles in Compressible Isotropic Turbulence
,”
Phys. Fluids
,
28
(
5
), p.
055104
.
13.
Hammitt
,
F.
,
Hwang
,
J.
, and
Kim
,
W.
,
1975
, “
Liquid Film Thickness Measurements in University of Michigan Wet Steam Tunnel
,” University of Michigan, Ann Arbor, MI, Report No.
UMICH--012449-23-1
https://inis.iaea.org/search/search.aspx?orig_q=RN:8306444.
14.
Pletcher
,
R. H.
,
Tannehill
,
J. C.
, and
Anderson
,
D.
,
2012
,
Computational Fluid Mechanics and Heat Transfer
,
CRC Press
, Boca Raton, FL.
15.
Vreugdenhil
,
C. B.
,
2013
,
Numerical Methods for Shallow-Water Flow
, Vol.
13
,
Springer
, Cham, Switzerland.
16.
Zaichik
,
L.
,
Nigmatulin
,
B.
, and
Pershukov
,
V.
,
1995
, “
Modelling of Dynamics of Aerosols in Near-Wall Turbulent Flows and Particle Deposition in Pipes
,”
Advances in Multiphase Flow
, Elsevier, Amsterdam, The Netherlands.
17.
Spedding
,
P.
, and
Hand
,
N.
,
1997
, “
Prediction in Stratified Gas-Liquid Co-Current Flow in Horizontal Pipelines
,”
Int. J. Heat Mass Transfer
,
40
(
8
), pp.
1923
1935
.
18.
Ohnuki
,
A.
,
Adachi
,
H.
, and
Murao
,
Y.
,
1988
, “
Scale Effects on Countercurrent Gas-Liquid Flow in a Horizontal Tube Connected to an Inclined Riser
,”
Nucl. Eng. Des.
,
107
(
3
), pp.
283
294
.
19.
Jameson
,
A.
,
1991
, “
Time Dependent Calculations Using Multigrid, With Applications to Unsteady Flows Past Airfoils and Wings
,”
AIAA
Paper No. 91-1596.
20.
Schiller
,
L.
, and
Naumann
,
Z.
,
1935
, “
A Drag Coefficient Correlation
,”
Zeitschrift des Vereins Deutscher Ingenieure
, Vol. 77, pp. 318–320.
21.
Basol
,
A. M.
,
2014
, “
Turbine Design Optimizations Using High Fidelity CFD
,”
Ph.D. thesis
, ETH Zürich, Zürich, Switzerland.https://www.research-collection.ethz.ch/handle/20.500.11850/97455
22.
Young
,
J.
,
Yau
,
K.
, and
Walters
,
P.
,
1988
, “
Fog Droplet Deposition and Coarse Water Formation in Low-Pressure Steam Turbines: A Combined Experimental and Theoretical Analysis
,”
ASME, J. Turbomach
,
110
(
2
), pp.
163
172
.
23.
Khan
,
J. R.
, and
Wang
,
T.
,
2011
, “
Three-Dimensional Modeling for Wet Compression in a Single Stage Compressor Including Liquid Particle Erosion Analysis
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
012001
.
You do not currently have access to this content.