Cruise specific fuel consumption (SFC) of turbofan engines is a key metric for increasing airline profitability and for reducing CO2 emissions. Although increasing design bypass ratio (BPR) of separate exhaust turbofan configurations improves cruise SFC, further improvements can be obtained with online control actuated variable geometry modulations of bypass nozzle throat area, core nozzle throat area, and compressor variable vanes (CVV/CVG). The scope of this paper is to show only the benefits possible, and the process used in determining those benefits, and not to suggest any particular control algorithm for searching the best combination of the control effectors. A parametric cycle study indicated that the effector modulations could increase the cruise BPR, core efficiency, transmission efficiency, propulsive efficiency, and ideal velocity ratio resulting in a cruise SFC improvement of as much as 2.6% depending upon the engine configuration. The changes in these metrics with control effector variations will be presented. Scheduling of CVV is already possible in legacy digital controls; perturbation to this schedule and modulation of nozzle areas should be explored in light of the low bandwidth requirements at steady-state cruise conditions.

References

1.
Frost
,
T. H.
,
1966
, “
Practical Bypass Mixing Schemes for Fan Jet Aero Engines
,”
Aeronaut. Q.
, pp.
141
159
.https://engineering.purdue.edu/AAECourses/aae537/Fall%202007/Frost%20paper
2.
Khalid
,
S. J.
,
2016
, “
Aerothermodynamic Benefits of Mixed Exhaust Turbofans
,”
AIAA
Paper No. 2016-4641.
3.
Kurzke
,
J.
,
2015
, “
GasTurb 12 Software
,”
GasTurb GmbH
, Aachen, Germany.http://www.gasturb.de/Gtb12Manual/GasTurb12.pdf
4.
Khalid
,
S. J.
,
2014
, “
Gas Turbine Aerothermodynamics and Performance Calculations
,” American Society of Mechanical Engineers, New York.
5.
Khalid
,
S. J.
,
2016
, “
Performance Enhancement of Subsonic Turbofans
,”
SAE
Paper No. 2016-01-2018.
6.
Michel
,
U.
,
2011
, “
The Benefits of Variable Area Fan Nozzles on Turbofan Engines
,”
AIAA
Paper No. 2011-226.
7.
Khalid
,
S. J.
,
1992
, “
Role of Dynamic Simulation in Fighter Engine Design and Development
,”
J. Propul. Power
,
8
(
1
), pp.
219
226
.
8.
Khalid
,
S. J.
,
1998
, “
Investigating Turbofan Engine Internal Aerodynamics
,”
SAE
Paper No. 965630.
9.
Litt
,
J. S.
,
Simon
,
D. L.
,
Garg
,
S.
,
Guo
,
T.-H.
,
Mercer
,
C.
,
Millar
,
R.
,
Behbahani
,
A.
,
Bajwa
,
A.
, and
Tensen
,
D. T.
,
2004
, “
Survey of Intelligent Control and Health Management Technologies for Aircraft Propulsion Systems
,”
J. Aerosp. Comput. Inf. Commun.
,
1
(
12
), pp.
543
563
.
10.
Khalid
,
S. J.
,
2015
, “
Gas Turbine Engine Performance Seeking Control
,” Rolls-Royce Corporation, London, U.S. Patent No.
US20150267619 A1
.http://www.google.tl/patents/US20150267619
11.
Brunell
,
B. J.
,
Mathews
,
H. K.
Jr.
, and
Kumar
,
A.
,
2004
, “
Adaptive Model-Based Control Systems and Methods for Controlling a Gas Turbine
,” General Electric Company, Boston, MA, U.S. Patent No.
US6823675 B2
.https://www.google.ch/patents/US6823675
12.
Khalid
,
S. J.
, and
Faherty
,
M. F.
,
1993
, “
Propulsion System Flight Test Analysis Using Modeling Techniques
,”
Int. J. Turbo Jet Engines
,
10
(
1
), pp.
31
43
.
13.
Khalid
,
S. J.
,
Sokhey
,
J.
,
Chakka
,
P.
, and
Pierluissi
,
A.
,
2010
, “
Ejector/Engine/Nacelle Integration for Increased Thrust Minus Drag
,”
AIAA
Paper No. 2010-6501.
14.
Khalid
,
S. J.
,
2013
, “
Gas Turbine Engine With Ejector
,” Rolls-Royce Corporation, London, U.S. Patent No.
US8572947 B2
.http://www.google.ch/patents/US8572947
15.
Khalid
,
S. J.
,
2014
, “
Gas Turbine Engine With Ejector
,” Rolls-Royce Corporation, London, U.S. Patent No.
US8844264 B2
.http://www.google.ch/patents/US8844264
16.
Simon
,
D. L.
, and
Garg
,
S.
,
2009
, “
Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation
,”
ASME J. Eng. Gas Turbines Power
,
132
(3), p. 031601.
17.
Volopini
,
A.
, and
Brotherton
,
T.
,
2008
, “
Empirical Tuning of an On board Real Time Gas Turbine Engine Model
,” United Technologies Corporation, Farmington, CT, U.S. Patent No.
US7472100 B2
.http://www.google.ch/patents/US7472100
18.
Smith
,
R. H.
,
Chisholm
,
J. D.
, and
Stewart
,
J. F.
,
1991
, “
Optimizing Aircraft Performance With Adaptive, Integrated Flight/Propulsion Control
,”
ASME J. Eng. Gas Turbines Power
,
113
(
1
), pp.
87
94
.
19.
Simon
,
D.
, and
Simon
,
D. L.
,
2005
, “
Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering
,”
ASME J. Eng. Gas Turbines Power
,
127
(
2
), pp.
323
328
.
20.
Simon
,
D. L.
,
2006
, “
Kalman Filter With Inequality Constraints for Turbofan Engine Health Estimation
,”
IEE Proc.: Control Theory Appl.
,
153
(3), pp.
371
378
.
You do not currently have access to this content.