For solar plants, waste-energy recovery, and turbogenerators, there is a considerable amount of waste energy due to low mass flow rate. Owing to the high specific power output and large pressure ratios across the turbine, a supersonic industrial steam turbine (IST) is able to utilize the waste energy associated with low mass flow rate. Supersonic IST has fewer stages than conventional turbines and a compact and modular design, thus avoiding the excessive size and manufacturing cost of conventional IST. Given their flexible operation and ability to function with loads in the range of 50–120% of the design load, supersonic IST offers significant advantages compared to conventional IST. The strong shock-wave loss caused by supersonic flows can be reduced by decreasing the shock intensity and reducing its influence; consequently, a supersonic IST can reach higher efficiency levels. Considering the demonstrated utility of bowed blades in conventional IST, this paper presents a study of the use of bowed blades in a supersonic IST. For this purpose, first, the shock-wave structure in the supersonic flow field was analyzed and compared with experimental results. Then, four different bowed blades were designed and compared with a straight blade to study the influence of bowed blades on the shock-wave structure and wetness. The results indicate that S-shaped bowing can improve the efficiency of supersonic turbines, and the energy-loss coefficient of the stators can be decreased by 2.4% or more under various operating conditions.

References

1.
Reza
,
A.
, and
Abolghasem
,
M. T.
,
2013
, “
Experimental and Numerical Investigation of Design Optimization of a Partial Admitted Supersonic Turbine
,”
Propul. Power Res.
,
2
(
1
), pp.
70
83
.
2.
Li
,
B.
,
Han
,
X.
,
Wan
,
Z.
,
Wang
,
X.
, and
Tang
,
Y.
,
2016
, “
Influence of Ultrasound on Heat Transfer of Copper Tubes With Different Surface Characteristics in Sub-Cooled Boiling
,”
Appl. Therm. Eng.
,
92
, pp.
93
103
.
3.
Kato
,
H.
, and
Funazaki
,
K.
,
2014
, “
POD-Driven Adaptive Sampling for Efficient Surrogate Modeling and Its Application to Supersonic Turbine Optimization
,”
ASME
Paper No. GT2014-27229.
4.
Corriveau
,
D.
, and
Sjolander
,
S. A.
,
2003
, “
Influence of Loading Distribution on the Performance of Transonic HP Turbine Blades
,”
ASME
Paper No. GT2003-38079.
5.
Parvizinia
,
M.
,
Berlich
,
C.
,
Truckenmüller
,
F.
, and
Stüer
,
H.
,
2004
, “
Numerical and Experimental Investigations Into the Aerodynamic Performance of a Supersonic Turbine Blade Profile
,”
ASME
Paper No. GT2004-53823.
6.
Shigeki
,
S.
,
2012
, “
Development of Design Method for Supersonic Turbine Aerofoils Near the Tip of Long Blades in Steam Turbines—Part 1: Overall Configuration
,”
ASME
Paper No. GT2012-68218.
7.
Paniagua
,
G.
,
Iorio
,
M. C.
,
Vinha
,
N.
, and
Sousa
,
J.
,
2014
, “
Design and Analysis of Pioneering High Supersonic Axial Turbines
,”
Int. J. Mech. Sci.
,
89
, pp.
65
77
.
8.
Shigek
,
S.
, and
Hideki
,
O.
,
2013
, “
Development of Design Method for Supersonic Turbine Aerofoils Near the Tip of Long Blades in Steam Turbines—Part 2: Configuration Details and Validation
,”
ASME
Paper No. GT2013-94039.
9.
Wolf
,
T.
,
Cost
,
F.
,
Janke
,
E.
,
Haselbach
,
F.
, and
Willer
,
L.
,
2003
, “
Experimental and Numerical Studies on Highly Loaded Supersonic Axial Turbine Cascades
,”
ASME
Paper No. GT2010-23808.
10.
Hura
,
H. S.
,
Saeidi
,
R.
,
Carson
,
S.
,
Shin
,
H. W.
, and
Giel
,
P.
,
2013
, “
Design and Test Results of a Ultra High Loaded Single Stage High Pressure Turbine
,”
ASME
Paper No. GT2013-94055.
11.
Gribin
,
V.
,
Tishchenko
,
A.
,
Gavrillov
,
I.
,
Tishchenko
,
V.
,
Khomyakov
,
S.
, and
Popov
,
V.
,
2014
, “
Experimental Studies of Supersonic Steam Flow in the Flat Nozzle Blade Cascade at Different Initial Steam Conditions
,”
ASME
Paper No. GT2014-26209.
12.
Dykas
,
S.
,
Majkut
,
M.
,
Strozik
,
M.
, and
Smolka
,
K.
,
2015
, “
Experimental Study of Condensing Steam Flow in Nozzles and Linear Blade Cascade
,”
Int. J. Heat Mass Transfer
,
80
, pp.
50
57
.
13.
Matsuo
,
S.
,
Mohammad
,
M.
,
Nagao
,
J.
,
Hashimoto
,
T.
,
Setoguchi
,
T.
, and
Kim
,
H. D.
,
2013
, “
Effect of Non-Equilibrium Condensation in Shear Layer on Supersonic Impinging Jets
,”
Procedia Eng.
,
56
, pp.
437
444
.
14.
Rad
,
E. A.
,
Mahpeykar
,
M. R.
, and
Teymourtash
,
A. R.
,
2013
, “
Evaluation of Simultaneous Effects of Inlet Stagnation Pressure and Heat Transfer on Condensing Water-Vapor Flow in a Supersonic Laval Nozzle
,”
Sci. Iran. B
,
20
(
1
), pp.
141
151
.
15.
Hanafi
,
A. S.
,
Mostafa
,
G. M.
,
Waheed
,
A.
, and
Fathy
,
A.
,
2015
, “
1-D Mathematical Modeling and CFD Investigation on Supersonic Steam Ejector in MED-TVC
,”
Energy Procedia
,
75
, pp.
3239
3252
.
16.
Starzmann
,
J.
,
Schatz
,
M.
,
Casey
,
M. V.
,
Mayer
,
J. F.
, and
Sieverding
,
F.
,
2011
, “
Modeling and Validation of Wet Steam Flow in a Low Pressure Steam Turbine
,”
ASME
Paper No. GT2011-45672.
17.
Noori Rahim Abadi
,
S. M. A.
, and
Kouhikamali
,
R.
,
2015
, “
Two-Fluid Model for Simulation of Supersonic Flow of Wet Steam Within High-Pressure Nozzles
,”
Int. J. Therm. Sci.
,
96
, pp.
173
182
.
18.
Patel
,
Y.
,
Patel
,
G.
, and
Saaresti
,
T. T.
,
2015
, “
Influence of Turbulence Modeling on Non-Equilibrium Condensing Flows in Nozzle and Turbine Cascade
,”
Int. J. Heat Mass Transfer
,
88
, pp.
165
180
.
19.
Wang, Z., Su, J., and Zhang, J.,
1994
, “
New Progress of Investigation Into Mechanism of Reducing Energy Loss in Cascades With Curved and Twisted Blades
,”
J. Eng. Thermophys.
,
15
(2), pp.
147
152
.
20.
Stüer
,
H.
,
Truckenmüller
,
F.
,
Borthwick
,
D.
, and
Denton
,
J. D.
,
2005
, “
Aerodynamic Concept for Very Large Steam Turbine Last Stages
,”
ASME
Paper No. GT2005-68746.
21.
Völker
,
L.
,
Casey
,
M.
,
Dunham
,
J.
, and
Stüer
,
H.
,
2008
, “
The Influence of Lean and Sweep in a Low Pressure Steam Turbine: Throughflow Modeling and Experimental Measurements
,”
ASME
Paper No. GT2008-50188.
22.
Sigg
,
R.
,
Casey
,
M. V.
,
Mayer
,
J. F.
, and
Sürken
,
N.
,
2008
, “
The Influence of Lean and Sweep in a Low Pressure Steam Turbine: Analysis of Three Stages With a 3D CFD Model
,”
ASME
Paper No. GT2008-50161.
23.
Ono
,
H.
,
Senoo
,
S.
,
Kudo
,
T.
, and
Murata
,
K.
,
2013
, “
The Effects of the Tangential Leans for the Last Stage Nozzles of Steam Turbine
,”
ASME
Paper No. GT2013-95827.
24.
ANSYS, 2011, “ANSYS CFX Version 14 Documentation,”ANSYS Inc., Canonsburg, PA, accessed Apr. 24, 2017, http://www.ansys.com/products/fluids/ansys-cfx
You do not currently have access to this content.