Nitrogen oxides (NOx) emissions from diesel engines can profoundly be suppressed if a portion of exhaust gases is cooled through a heat exchanger known as exhaust gas recirculation (EGR) cooler and returned to the intake of the combustion chamber. One major hurdle though for the efficient performance of EGR coolers is the deposition of various species, i.e., particulate matter (PM) on the surface of EGR coolers. In this study, a model is proposed for the deposition and removal of soot particles carried by the exhaust gases in a tubular cooler. The model takes thermophoresis into account as the primary deposition mechanism. Several removal mechanisms of incident particle impact, shear force, and rolling moment (RM) have rigorously been examined to obtain the critical velocity that is the maximum velocity at which the particulate fouling can profoundly be suppressed. The results show that the dominant removal mechanism changes from one to another based particle size and gas velocity. Based on particle mass and energy conservation equations, a model for the fouling resistance has also been developed which shows satisfactory agreement when compared with the fouling experimental results.

References

1.
Walsh
,
M. P.
,
1997
, “
Global Trends in Diesel Emissions Control
,”
SAE
Technical Paper No. 970179.
2.
Hountalas
,
D. T.
,
Mavropoulos
,
G. C.
, and
Binder
,
K. B.
,
2008
, “
Effect of Exhaust Gas Recirculation (EGR) Rates on Heavy Duty DI Diesel Engine Performance and Emissions
,”
Energy
,
33
(
2
), pp.
272
283
.
3.
Zheng
,
M.
,
Reader
,
G. T.
, and
Hawley
,
J. G.
,
2004
, “
Diesel Engine Exhaust Gas Recirculation—A Review on Advanced and Novel Concepts
,”
Energy Convers. Manage.
,
45
(
6
), pp.
883
900
.
4.
Hoard
,
J.
,
Abarham
,
M.
,
Styles
,
D.
,
Giuliano
,
J. M.
,
Sluder
,
C. S.
, and
Storey
,
J. M. E.
,
2008
, “
Diesel EGR Cooler Fouling
,”
SAE
Technical Paper No. 2008-01-2475.
5.
Sluder
,
C. S.
,
Storey
,
J. M.
,
Lewis
,
S. A.
,
Styles
,
D.
,
Giuliano
,
J.
, and
Hoard
,
J. W.
,
2008
, “
Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst
,”
SAE
Technical Paper No. 2008-01-2467.
6.
Lance
,
M. J.
,
Sluder
,
C. S.
,
Wang
,
H.
, and
Storey
,
J. M.
,
2009
, “
Direct Measurement of EGR Cooler Deposit Thermal Properties for Improved Understanding of Cooler Fouling
,”
SAE
Technical Paper No. 2009-01-1461.
7.
Kern
,
D. Q.
, and
Seaton
,
R. E.
,
1959
, “
A Theoretical Analysis of Thermal Surface Fouling
,”
Br. Chem. Eng.
,
4
(
5
), pp.
258
262
.
8.
Grillot
,
J. M.
, and
Icart
,
G.
,
1997
, “
Fouling of a Cylindrical Probe and a Finned Tube in a Diesel Exhaust Environment
,”
Exp. Therm. Fluid Sci.
,
14
(
4
), pp.
442
454
.
9.
Thonon
,
B.
,
Grandgeorge
,
S.
, and
Jallut
,
C.
,
1999
, “
Effect of Geometry and Flow Conditions on Particulate Fouling in Plate Heat Exchangers
,”
Heat Transfer Eng.
,
20
(
3
), pp.
12
24
.
10.
Abd-Elhady
,
M. S.
,
Zornek
,
T.
,
Malayeri
,
M. R.
,
Balestrino
,
S.
,
Szymkowicz
,
P. G.
, and
Müller-Steinhagen
,
H.
,
2011
, “
Influence of Gas Velocity on Particulate Fouling of Exhaust Gas Recirculation Coolers
,”
Int. J. Heat Mass Transfer
,
54
(
4
), pp.
838
846
.
11.
Abd-Elhady
,
M. S.
, and
Malayeri
,
M. R.
,
2013
, “
Asymptotic Characteristics of Particulate Deposit Formation in Exhaust Gas Recirculation Coolers
,”
Appl. Therm. Eng.
,
60
(
1–2
), pp.
96
104
.
12.
Abarham
,
M.
,
Hoard
,
J.
,
Assanis
,
D.
,
Styles
,
D.
,
Curtis
,
E. W.
,
Sluder
,
C. S.
, and
Storey
,
J. M. E.
,
2010b
, “
An Analytical Study of Thermophoretic Particulate Deposition in Turbulent Pipe Flows
,”
Aerosol Sci. Technol.
,
44
(
9
), pp.
785
795
.
13.
Warey
,
A.
,
Balestrino
,
S.
,
Szymkowicz
,
P.
, and
Malayeri
,
M. R.
,
2012
, “
A One-Dimensional Model for Particulate Fouling and Hydrocarbon Condensation in Exhaust Gas Recirculation Coolers
,”
Aerosol Sci. Technol.
,
46
(
2
), pp.
198
213
.
14.
Paz
,
C.
,
Suarez
,
E.
,
Eiris
,
A.
, and
Porteiro
,
J.
,
2013
, “
Development of a Predictive CFD Fouling Model for Diesel Engine Exhaust Gas Systems
,”
Heat Transfer Eng.
,
34
(
8–9
), pp.
674
682
.
15.
Housiadas
,
C.
, and
Drossinos
,
Y.
,
2005
, “
Thermophoretic Deposition in Tube Flow
,”
Aerosol Sci. Technol.
,
39
(
4
), pp.
304
318
.
16.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
New York
.
17.
Abarham
,
M.
,
Hoard
,
J.
,
Assanis
,
D.
,
Styles
,
D.
,
Curtis
,
E. W.
,
Ramesh
,
N.
,
Sluder
,
C. S.
, and
Storey
,
J. M. E.
,
2009
, “
Numerical Modeling and Experimental Investigations of EGR Cooler Fouling in a Diesel Engine
,”
SAE
Technical Paper No. 2009-01-1506.
18.
Rogers
,
D. E.
, and
Reed
,
J.
,
1984
, “
The Adhesion of Particles Undergoing an Elastic–Plastic Impact With a Surface
,”
J. Phys. D: Appl. Phys.
,
17
(
4
), pp.
677
689
.
19.
van Beek
,
M. C.
,
Rindt
,
C. C. M.
,
Wijers
,
J. G.
, and
van Steenhoven
,
A. A.
,
2006
, “
Rebound Characteristics for 50-μm Particles Impacting a Powdery Deposit
,”
Powder Technol.
,
165
(
2
), pp.
53
64
.
20.
Abd-Elhady
,
M. S.
,
Rindt
,
C. C. M.
,
Wijers
,
J. G.
,
van Steenhoven
,
A. A.
,
Bramer
,
E. A.
, and
van der Meer
,
T. H.
,
2004
, “
Minimum Gas Speed in Heat Exchangers to Avoid Particulate Fouling
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3943
3955
.
21.
Han
,
H.
,
He
,
Y. L.
,
Tao
,
W. Q.
, and
Li
,
Y. S.
,
2014
, “
A Parameter Study of Tube Bundle Heat Exchangers for Fouling Rate Reduction
,”
Int. J. Heat Mass Transfer
,
72
, pp.
210
221
.
22.
Mehta
,
D.
,
Alger
,
T.
,
Hall
,
M. J.
,
Matthews
,
R. D.
, and
Ng
,
H.
,
2001
, “
Particulate Characterization of a DISI Research Engine Using a Nephelometer and In-Cylinder Visualization
,”
SAE
Technical Paper No. 2001-01-1976.
23.
Lapureta
,
M.
,
Ballesteros
,
R.
, and
Martos
,
F. J.
,
2006
, “
A Method to Determine the Fractal Dimension of Diesel Soot Agglomerates
,”
J. Colloid Interface Sci.
,
303
(
1
), pp.
149
158
.
24.
van Beek
,
M. C.
,
2001
, “
Gas-Side Fouling in Heat Recovery Boilers
,” Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.
25.
Johnson
,
K. L.
, and
Pollock
,
H. M.
,
1994
, “
The Role of Adhesion in the Impact of Elastic Spheres
,”
J. Adhes. Sci. Technol.
,
8
(
11
), pp.
1323
1332
.
26.
Thornton
,
C.
, and
Ning
,
Z.
,
1998
, “
A Theoretical Model for the Stick/Bounce Behaviour of Adhesive, Elastic–Plastic Spheres
,”
Powder Technol.
,
99
(
2
), pp.
154
162
.
27.
Lee
,
B. E.
,
Fletcher
,
C. A.
,
Shin
,
S. H.
, and
Kwon
,
S. B.
,
2001
, “
Computational Study of Fouling Deposit Due to Surface-Coated Particles in Coal-Fired Power Utility Boilers
,”
Fuel
,
81
(
15
), pp.
2001
2008
.
28.
Pan
,
Y.
,
Si
,
F.
,
Xu
,
Z.
, and
Romero
,
C.
,
2011
, “
An Integrated Theoretical Fouling Model for Convective Heating Surfaces in Coal-Fired Boilers
,”
Powder Technol.
,
210
(
2
), pp.
150
156
.
29.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Math. Phys. Sci.
,
324
(
1558
), pp.
301
313
.
30.
Reeks
,
M. W.
, and
Hall
,
D.
,
2001
, “
Kinetic Models for Particle Resuspension in Turbulent Flows: Theory and Measurement
,”
J. Aerosol Sci.
,
32
(
1
), pp.
1
31
.
31.
Su
,
Y. T.
,
Hung
,
T. C.
, and
Ou
,
C. C.
,
2006
, “
A Preliminary Analysis on Tool Wear Rate of Polishing Process: Adhesion Effects
,”
Wear
,
260
(
1–2
), pp.
50
61
.
32.
Mehravaran
,
M.
, and
Brereton
,
G.
,
2011
, “
Modeling of Thermophoretic Soot Deposition and Stabilization on Cooled Surfaces
,”
SAE
Technical Paper No. 2011-01-2183.
33.
Pradhan
,
S. K.
,
Nayak
,
B. B.
,
Sahay
,
S. S.
, and
Mishara
,
B. K.
,
2009
, “
Mechanical Properties of Graphite Flakes and Spherulites Measured by Nanoindentation
,”
Carbon
,
47
(
9
), pp.
2290
2292
.
34.
Baumli
,
P.
, and
Kaptay
,
G.
,
2008
, “
Wettability of Carbon Surfaces by Pure Molten Alkali Chlorides and Their Penetration Into a Porous Graphite Substrate
,”
Mater. Sci. Eng. A
,
495
(
1–2
), pp.
192
196
.
35.
Abarham
,
M.
,
Hoard
,
J.
,
Assanis
,
D.
,
Styles
,
D.
,
Curtis
,
E. W.
, and
Ramesh
,
N.
,
2010a
, “
Review of Soot Deposition and Removal Mechanisms in EGR Coolers
,”
SAE
Technical Paper No. 2010-01-1211.
36.
Abarham
,
M.
,
Chafekar
,
T.
,
Hoard
,
J. W.
,
Salvi
,
A.
,
Styles
,
D. J.
,
Sluder
,
C. S.
, and
Assanis
,
D.
,
2013
, “
In-Situ Visualization of Exhaust Soot Particle Deposition and Removal in Channel Flows
,”
Chem. Eng. Sci.
,
87
, pp.
359
370
.
37.
Yung
,
B. P.
,
Merry
,
H.
, and
Bott
,
T. R.
,
1989
, “
The Role of Turbulent Bursts in Particle Re-entrainment in Aqueous Systems
,”
Chem. Eng. Sci.
,
44
(
4
), pp.
873
882
.
38.
Tabor
,
D.
,
1977
, “
Surface Forces and Surface Interactions
,”
J. Colloid Interface Sci.
,
58
(
1
), pp.
2
13
.
39.
Ahmadi
,
G.
,
Guo
,
S.
, and
Busnaina
,
A.
,
2007
, “
Particle Adhesion and Detachment in Turbulent Flows Including Capillary Force
,”
Part. Sci. Technol.
,
25
(
1
), pp.
59
76
.
40.
Zhang
,
F.
,
Busnaina
,
A.
,
Fury
,
M.
, and
Wang
,
S.
,
2000
, “
The Removal of Deformed Submicron Particles From Silicon Wafers by Spin Rinse and Megasonics
,”
J. Electron. Mater.
,
29
(
2
), pp.
199
204
.
41.
Malayeri
,
M. R.
,
Zornek
,
T.
,
Balestrino
,
A.
,
Warey
,
A.
, and
Szymkowicz
,
P. G.
,
2013
, “
Deposition of Nano-Sized Soot Particles in Various EGR Coolers Under Thermophoretic and Isothermal Conditions
,”
ASME Heat Transfer Eng.
,
34
(
8–9
), pp.
665
673
.
42.
Messerer
,
A.
,
Niessner
,
R.
, and
Poschl
,
U.
,
2003
, “
Thermophoretic Deposition of Soot Aerosol Particles Under Experimental Conditions Relevant for Modern Diesel Engines Exhaust Gas Systems
,”
J. Aerosol Sci.
,
34
(
8
), pp.
1009
1021
.
43.
He
,
C.
, and
Ahmadi
,
G.
,
1998
, “
Particle Deposition With Thermophoresis in Laminar and Turbulent Duct Flows
,”
Aerosol Sci. Technol.
,
29
(
6
), pp.
525
546
.
44.
Romay
,
F. J.
,
Takagaki
,
S. S.
,
Liu
,
B.
, and
Liu
,
B. Y.
,
1998
, “
Thermophoretic Deposition of Aerosol Particles in Turbulent Pipe Flow
,”
J. Aerosol Sci.
,
29
(
8
), pp.
943
959
.
45.
Bravo
,
Y.
,
Moreno
,
F.
, and
Longo
,
O.
,
2007
, “
Improved Characterization of Fouling in Cooled EGR System
,”
SAE
Technical Paper No. 2007-01-1257.
46.
Mirsadraee
,
A. R.
, and
Malayeri
,
M. R.
,
2015
, “
Estimation of Fouling Propensity of Soot Particles in an EGR Cooler Using Kalman Filters
,”
ASME J. Gas Turbines Power
,
137
(
12
), p.
121503
.
You do not currently have access to this content.