The successful development of coal-based integrated gasification combined cycle (IGCC) technology requires gas turbines capable of achieving the dry low nitrogen oxides (NOx) combustion of hydrogen-rich syngas fuels for low emissions and high plant efficiency. Mitsubishi Hitachi Power Systems, Ltd. (MHPS) has been developing a “multiple-injection burner” to achieve the dry low-NOx (DLN) combustion of hydrogen-rich syngas fuels. The purposes of this paper are to present the test results of a multican combustor equipped with multiple-injection burners in an IGCC pilot plant, and evaluate combustor performance by focusing on the effects of flame shapes. The syngas fuel produced in the plant contained approximately 50% carbon monoxide, 20% hydrogen, and 20% nitrogen by volume. In the tests, the combustor with slenderer flames achieved lower NOx emissions of 10.9 ppm (at 15% oxygen), reduced combustor liner and burner plate metal temperatures, and lowered combustion efficiency at the maximum gas turbine load. The test results showed that the slenderer flames were more effective in reducing NOx emissions and liner/burner plate metal temperatures. A comparison with the diffusion-flame combustor demonstrated that the multiple-injection combustors achieved the dry low-NOx combustion of the syngas fuel in the plant.

References

1.
Intergovernmental Panel on Climate Change (IPCC)
,
2005
,
IPCC Special Report on Carbon Dioxide Capture and Storage
,
B.
Metz
,
O.
Davidson
,
H.
de Coninck
,
M.
Loos
, and
L.
Meyer
, eds.,
Cambridge University Press
,
New York
.
2.
NEDO
,
2005
, “
Report (FY2004) in Clean Coal Technology Promotion Program: Investigation for Co-Production System Based on Coal Gasification
,” New Energy and Industrial Technology Development Organization, Kawasaki, Japan, Report No. 100005208 (in Japanese).
3.
Lieuwen
,
T.
,
Yang
,
V.
, and
Yetter
,
R.
,
2009
,
Synthesis Gas Combustion: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
.
4.
Lieuwen
,
T.
, and
Yang
,
V.
,
2013
,
Gas Turbine Emissions
,
Cambridge University Press
,
New York
.
5.
York
,
W. D.
,
Ziminsky
,
W. S.
, and
Yilmaz
,
E.
,
2013
, “
Development and Testing of a Low NOx Hydrogen Combustion System for Heavy-Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
022001
.10.1115/1.4007733
6.
Wu
,
J.
,
Brown
,
P.
,
Diakunchak
,
I.
,
Gulati
,
A.
,
Lenze
,
M.
, and
Koestlin
,
B.
,
2007
, “
Advanced Gas Turbine Combustion System Development for High Hydrogen Fuels
,”
ASME
Paper No. GT2007-28337. 10.1115/GT2007-28337
7.
Reiss
,
F.
,
Reyser
,
K.
, and
Griffin
,
T.
,
2002
, “
The ALSTOM GT13E2 Medium BTU Gas Turbine
,”
ASME
Paper No. GT2002-30108. 10.1115/GT2002-30108
8.
Therkelsen
,
P. L.
,
Littlejohn
,
D.
, and
Cheng
,
R. K.
,
2012
, “
Parametric Study of Low-Swirl Injector Geometry on Its Operability
,”
ASME
Paper No. GT2012-68436. 10.1115/GT2012-68436
9.
Roediger
,
T.
,
Lammel
,
O.
,
Aigner
,
M.
,
Beck
,
C.
, and
Krebs
,
W.
,
2012
, “
Part-Load Operation of a Piloted FLOX® Combustion System
,”
ASME
Paper No. GT2012-69006. 10.1115/GT2012-69006
10.
Hollon
,
B.
,
Steinthorsson
,
E.
,
Mansour
,
A.
,
McDonell
,
V.
, and
Lee
,
H.
,
2011
, “
Ultra-Low Emission Hydrogen/Syngas Combustion With a 1.3 MW Injector Using a Micro-Mixing Lean-Premix System
,”
ASME
Paper No. GT2011-45929. 10.1115/GT2011-45929
11.
Funke
,
H. H.-W.
,
Boerner
,
S.
,
Keinz
,
J.
,
Kusterer
,
K.
,
Kroniger
,
D.
,
Kitajima
,
J.
,
Kazari
,
M.
, and
Horikawa
,
A.
,
2012
, “
Numerical and Experimental Characterization of Low NOx Micromix Combustion Principle for Industrial Hydrogen Gas Turbine Applications
,”
ASME
Paper No. GT2012-69421. 10.1115/GT2012-69421
12.
Alavandi
,
S. K.
,
Etemad
,
S.
, and
Baird
,
B. D.
,
2012
, “
Low Single Digit NOx Emissions Catalytic Combustor for Advanced Hydrogen Turbines for Clean Coal Power Systems
,”
ASME
Paper No. GT2012-68128. 10.1115/GT2012-68128
13.
Bolaños
,
F.
,
Winkler
,
D.
,
Piringer
,
F.
,
Griffin
,
T.
,
Bombach
,
R.
, and
Mantzaras
,
J.
,
2013
, “
Study of a Rich/Lean Staged Combustion Concept for Hydrogen at Gas Turbine Relevant Conditions
,”
ASME
Paper No. GT2013-94420. 10.1115/GT2013-94420
14.
Asai
,
T.
,
Koizumi
,
H.
,
Dodo
,
S.
,
Takahashi
,
H.
,
Yoshida
,
S.
, and
Inoue
,
H.
,
2010
, “
Applicability of a Multiple-Injection Burner to Dry Low-NOx Combustion of Hydrogen-Rich Fuels
,”
ASME
Paper No. GT2010-22286. 10.1115/GT2010-22286
15.
Asai
,
T.
,
Dodo
,
S.
,
Koizumi
,
H.
,
Takahashi
,
H.
,
Yoshida
,
S.
, and
Inoue
,
H.
,
2011
, “
Effects of Multiple-Injection-Burner Configurations on Combustion Characteristics for Dry Low-NOx Combustion of Hydrogen-Rich Fuels
,”
ASME
Paper No. GT2011-45295. 10.1115/GT2011-45295
16.
Dodo
,
S.
,
Asai
,
T.
,
Koizumi
,
H.
,
Takahashi
,
H.
,
Yoshida
,
S.
, and
Inoue
,
H.
,
2011
, “
Combustion Characteristics of a Multiple-Injection Combustor for Dry Low-NOx Combustion of Hydrogen-Rich Fuels Under Medium Pressure
,”
ASME
Paper No. GT2011-45459. 10.1115/GT2011-45459
17.
Dodo
,
S.
,
Asai
,
T.
,
Koizumi
,
H.
,
Takahashi
,
H.
,
Yoshida
,
S.
, and
Inoue
,
H.
,
2013
, “
Performance of a Multiple-Injection Dry Low NOx Combustor With Hydrogen-Rich Syngas Fuels
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
011501
.10.1115/1.4006691
18.
Asai
,
T.
,
Dodo
,
S.
,
Akiyama
,
Y.
,
Hayashi
,
A.
,
Karishuku
,
M.
, and
Yoshida
,
S.
,
2013
, “
A Dry Low-NOx Gas-Turbine Combustor With Multiple-Injection Burners for Hydrogen-Rich Syngas Fuel: Testing and Evaluation of Its Performance in an IGCC Pilot Plant
,”
ASME
Paper No. POWER2013-98122. 10.1115/POWER2013-98122
19.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
20.
Glassman
,
I.
, and
Yetter
,
R. A.
,
2008
,
Combustion
, 4th ed.,
Academic Press
,
London
.
21.
Kimura
,
N.
,
2005
, “
EAGLE Project—Perspective on Coal Utilization Technology
,”
APEC Clean Fossil Energy Technical and Policy Seminar
,
Cebu City, Philippines
, Jan. 26–29, pp. 1–12.
22.
NEDO and Japan Coal Energy Center (JCOAL)
,
2006
,
Clean Coal Technologies in Japan—Technological Innovation in the Coal Industry
, New Energy and Industrial Technology Development Organization, NEDO,
Kawasaki
,
Japan
.
23.
Nagasaki
,
N.
,
Takeda
,
Y.
,
Akiyama
,
T.
, and
Kumagai
,
T.
,
2010
, “
Progress Toward Commercializing New Technologies for Coal Use—Oxygen-Blown IGCC+CCS
,”
Hitachi Rev.
,
59
(
3
), pp.
77
82
.
24.
Omata
,
K.
,
2014
, “
Oxygen-Blown Coal Gasification System
,”
J. Jpn. Inst. Energy
,
93
(
7
), pp.
624
630
(in Japanese).
25.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
73
80
.10.1115/1.1787513
26.
Gazzani
,
M.
,
Chiesa
,
P.
,
Martelli
,
E.
,
Sigali
,
S.
, and
Brunetti
,
I.
,
2013
, “
Using Hydrogen as Gas Turbine Fuel: Premixed Versus Diffusive Flame Combustors
,”
ASME
Paper No. GT2013-94701. 10.1115/GT2013-94701
27.
Nagasaki
,
N.
,
Sasaki
,
K.
,
Suzuki
,
T.
,
Dodo
,
S.
, and
Nagaremori
,
F.
,
2013
, “
Near-Zero-Emission IGCC Power Plant Technology
,”
Hitachi Rev.
,
62
(
1
), pp.
39
47
.
28.
Nagasaki
,
N.
, and
Akiyama
,
T.
,
2014
, “
Special Issue: 5. State-of-the-Art Coal-Fired Thermal Power, 2. Integrated Coal Gasification Combined Cycle, 2. Oxygen Blown
,”
Therm. Nucl. Power J.
,
65
(
10
), pp.
759
763
(in Japanese).
You do not currently have access to this content.