The use of close-coupled post injections is an in-cylinder soot-reduction technique that has much promise for high efficiency heavy-duty diesel engines. Close-coupled post injections, short injections of fuel that occur soon after the end of the main fuel injection, have been known to reduce engine-out soot at a wide range of engine operating conditions, including variations in injection timing, exhaust gas recirculation (EGR) level, load, boost, and speed. While many studies have investigated the performance of post injections, the details of the mechanism by which soot is reduced remains unclear. In this study, we have measured the efficacy of post injections over a range of load conditions, at constant speed, boost, and rail pressure, in a heavy-duty optically-accessible research diesel engine. Here, the base load is varied by changing the main-injection duration. Measurements of engine-out soot indicate that not only does the efficacy of a post injection decrease at higher engine loads, but that the range of post-injection durations over which soot reduction is achievable is limited at higher loads. Optical measurements, including the natural luminescence of soot and planar laser-induced incandescence of soot, provide information about the spatiotemporal development of in-cylinder soot through the cycle in cases with and without post-injections. The optical results indicate that the post injection behaves similarly at different loads, but that its relative efficacy decreases due to the increase in soot resulting from longer main-injection durations.

References

1.
United States Environmental Protection Agency,
2003
, “
Fact Sheet: Diesel Exhaust in the United States
,” Report No. EPA420-F-03-022.
2.
United States Code of Federal Regulations,
2013
, “
Title 40, Part 86
.”
3.
European Parliament,
2009
, “
Regulation (EC) No. 595/2009 of 18 June 2009
.”
4.
DieselNet,
2009
, http://www.dieselnet.com/
5.
Musculus
,
M. P. B.
,
Miles
,
P. C.
, and
Pickett
,
L. M.
,
2013
, “
Conceptual Models for Partially Premixed Low-Temperature Diesel Combustion
,”
Prog. Energy Combust. Sci.
,
39
(
2–3
), pp.
246
283
.10.1016/j.pecs.2012.09.001
6.
de Ojeda
,
W.
,
Zoldak
,
P.
,
Espinosa
,
R.
, and
Kumar
,
R.
,
2008
, “
Development of a Fuel Injection Strategy for Diesel LTC
,”
SAE
Technical Paper No. 2008-01-0057.10.4271/2008-01-0057
7.
Kanda
,
T.
,
Hakozaki
,
T.
,
Uchimoto
,
T.
,
Hatano
,
J.
,
Kitayama
,
N.
, and
Sono
,
H.
,
2006
, “
PCCI Operation With Fuel Injection Timing Set Close to TDC
,”
SAE
Technical Paper No. 2006-01-0920.10.4271/2006-01-0920
8.
Kim
,
D.
,
Ekoto
,
I.
,
Colban
,
W. F.
, and
Miles
,
P. C.
,
2008
, “
In-Cylinder CO and UHC Imaging in a Light-Duty Diesel Engine During PPCI Low-Temperature Combustion
,”
SAE Int. J. Fuels Lubr.
,
1
(
1
), pp.
933
956
.10.4271/2008-01-1602
9.
Han
,
M.
,
Assanis
,
D. N.
, and
Bohac
,
S. V.
,
2009
, “
Sources of Hydrocarbon Emissions From Low-Temperature Premixed Compression Ignition Combustion From a Common Rail Direct Injection Diesel Engine
,”
Combust. Sci. Technol.
,
181
(
3
), pp.
496
517
.10.1080/00102200802530066
10.
Lachaux
,
T.
and
Musculus
,
M. P. B.
,
2007
, “
In-Cylinder Unburned Hydrocarbon Visualization During Low-Temperature Compression-Ignition Engine Combustion Using Formaldehyde PLIF
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
2921
2929
.10.1016/j.proci.2006.07.044
11.
Musculus
,
M. P. B.
,
Lachaux
,
T.
,
Pickett
,
L. M.
, and
Idicheria
,
C. A.
,
2008
, “
End-of-Injection Over-Mixing and Unburned Hydrocarbon Emissions in Low-Temperature-Combustion Diesel Engines
,”
SAE Trans.
,
116
(
3
), pp.
515
541
.10.4271/2007-01-0907
12.
O’Connor
,
J.
and
Musculus
,
M. P. B.
,
2013
, “
Post Injections for Soot Reduction in Diesel Engines: A Review of Current Understanding
,”
SAE Int. J. Engines
,
6
(
1
), pp. 400–421.10.4271/2013-01-0917
13.
Bobba
,
M.
,
Musculus
,
M. P. B.
, and
Neel
,
W.
,
2010
, “
Effect of Post Injections on In-Cylinder and Exhaust Soot for Low-Temperature Combustion in a Heavy-Duty Diesel Engine
,”
SAE Int. J. Engines
,
3
(
1
), pp.
496
516
.10.4271/2010-01-0612
14.
Desantes
,
J. M.
,
Arrègle
,
J.
,
López
,
J. J.
, and
García
,
A.
,
2007
, “
A Comprehensive Study of Diesel Combustion and Emissions With Post-Injection
,”
SAE Trans.
,
116
(
3
), pp.
542
550
.10.4271/2007-01-0915
15.
Hotta
,
Y.
,
Inayoshi
,
M.
,
Nakakita
,
K.
,
Fujiwara
,
K.
, and
Sakata
,
I.
,
2005
, “
Achieving Lower Exhaust Emissions and Better Performance in an HSDI Diesel Engine With Multiple Injection
,”
SAE Trans.
,
114
(
3
), pp.
883
898
.10.4271/2005-01-0928
16.
Pierpont
,
D. A.
,
Montgomery
,
D. T.
, and
Reitz
,
R. D.
,
1995
, “
Reducing Particulate and NOx Using Multiple Injections and EGR in a D.I. Diesel
,”
SAE Trans.
,
104
(
3
), pp.
1041
1050
.10.4271/2005-01-0928
17.
Barro
,
C.
,
Tschanz
,
F.
,
Obrecht
,
P.
, and
Boulouchos
,
K.
,
2012
, “
Influence of Post-Injection Parameters on Soot Formation and Oxidation in a Common-Rail-Diesel Engine Using Multi-Color-Pyrometry
,”
ASME
Paper No. ICEF2012-92075.10.1115/ICEF2012-92075
18.
Payri
,
F.
,
Benajes
,
J.
,
Pastor
,
J. V.
, and
Molina
,
S.
,
2002
, “
Influence of the Post-Injection Pattern on Performance, Soot and NOx Emissions in a HD Diesel Engine
,”
SAE
Technical Paper No. 2002-01-0502.10.4271/2002-01-0502
19.
Benajes
,
J.
,
Molina
,
S.
, and
García
,
J. M.
,
2001
, “
Influence of Pre- and Post-Injection on the Performance and Pollutant Emissions in a HD Diesel Engine
,”
SAE Trans.
,
110
(
3
), pp.
361
371
.10.4271/2001-01-0526
20.
Chen
,
S. K.
,
2000
, “
Simultaneous Reduction of NOx and Particulate Emissions by Using Multiple Injections in a Small Diesel Engine
,”
SAE Trans.
,
109
(
3
), pp.
2127
2136
.10.4271/2000-01-3084
21.
Shayler
,
P. J.
,
Brooks
,
T. D.
,
Pugh
,
G. J.
, and
Gambrill
,
R.
,
2005
, “
The Influence of Pilot and Split-Main Injection Parameters on Diesel Emissions and Fuel Consumption
,”
SAE
Technical Paper No. 2005-01-0375.10.4271/2005-01-0375
22.
Greeves
,
G.
,
Tullis
,
S.
, and
Barker
,
B.
,
2003
, “
Advanced Two-Actuator EUI and Emission Reduction for Heavy-Duty Diesel Engines
,”
SAE Trans.
,
112
(
3
), pp.
914
931
.10.4271/2000-01-3084
23.
Mendez
,
S.
and
Thirouard
,
B.
,
2009
, “
Using Multiple Injection Strategies in Diesel Combustion: Potential to Improve Emissions, Noise and Fuel Economy Trade-Off in Low CR Engines
,”
SAE Int. J. Fuels Lubr.
,
1
(
1
), pp.
662
674
.10.4271/2008-01-1329
24.
Dronniou
,
N.
,
Lejeune
,
M.
,
Balloul
, I
.
, and
Higelin
,
P.
,
2005
, “
Combination of High EGR Rates and Multiple Injection Strategies to Reduce Pollutant Emissions
,”
SAE
Technical Paper No. 2005-01-3726.10.4271/2005-01-3726
25.
Tanin
,
K. V.
,
Wickman
,
D. D.
,
Montgomery
,
D. T.
,
Das
,
S.
, and
Reitz
,
R. D.
,
1999
, “
The Influence of Boost Pressure on Emissions and Fuel Consumption of a Heavy-Duty Single-Cylinder D.I. Diesel Engine
,”
SAE Trans.
,
108
(
3
), pp.
1148
1219
.10.4271/1999-01-0840
26.
Vanegas
,
A.
,
Won
,
H.
,
Felsch
,
C.
,
Gauding
,
M.
, and
Peters
,
N.
,
2008
, “
Experimental Investigation of the Effect of Multiple Injections on Pollutant Formation in a Common-Rail DI Diesel Engine
,”
SAE
Technical Paper No. 2008-01-1191.10.4271/2008-01-1191
27.
Montgomery
,
D. T.
and
Reitz
,
R. D.
,
2001
, “
Effects of Multiple Injections and Flexible Control of Boost and EGR on Emissions and Fuel Consumption of a Heavy-Duty Diesel Engine
,”
SAE Trans.
,
110
(
3
), pp.
33
54
.10.4271/2001-01-0195
28.
Yun
,
H.
and
Reitz
,
R. D.
,
2007
, “
An Experimental Investigation on the Effect of Post-Injection Strategies on Combustion and Emissions in the Low-Temperature Diesel Combustion Regime
,”
ASME J. Eng. Gas Turbines Power
,
129
(1), pp.
279
286
.10.1115/1.2180812
29.
Ehleskog
,
R.
and
Ochoterena
,
R. L.
,
2008
, “
Soot Evolution in Multiple Injection Diesel Flames
,”
SAE
Technical Paper No. 2008-01-2470.10.4271/2008-01-2470
30.
Yun
,
H.
,
Sun
,
Y.
, and
Reitz
,
R. D.
,
2005
, “
An Experimental and Numerical Investigation on the Effect of Post Injection Strategies on Combustion and Emissions in the Low-Temperature Diesel Combustion Regime
,”
ASME
Paper No. ICES2005-1043.10.1115/ICES2005-1043
31.
Bakenhus
,
M.
and
Reitz
,
R. D.
,
1999
, “
Two-Color Combustion Visualization of Single and Split Injections in a Single-Cylinder, Heavy-Duty D.I. Diesel Engine Using an Endoscope-Based Imaging System
,”
SAE Trans.
,
108
(
3
), pp.
1567
1584
.10.4271/1999-01-1112
32.
Badami
,
M.
,
Mallamo
,
F.
,
Millo
,
F.
, and
Rossi
,
E.
,
2003
, “
Experimental Investigation on the Effect of Multiple Injection Strategies on Emissions, Noise and Brake Specific Fuel Consumption of an Automotive Direct Injection Common-Rail Diesel Engine
,”
Int. J. Engine Res.
,
4
(
4
), pp.
299
314
.10.1243/146808703322743903
33.
Helmantel
,
A.
,
Somhorst
,
J.
, and
Denbratt
,
I.
,
2003
, “
Visualization of the Effects of Post Injection and Swirl on the Combustion Process of a Passenger Car Common Rail DI Diesel Engine
,”
ASME
Paper No. ICES2003-622.10.1115/ICES2003-622
34.
Mancaruso
,
E.
,
Merola
,
S.
, and
Vaglieco
,
B.
,
2008
, “
Study of the Multi-Injection Combustion Process in a Transparent Direct Injection Common Rail Diesel Engine by Means of Optical Techniques
,”
Int. J. Engine Res.
,
9
(
6
), pp.
483
498
.10.1243/14680874JER01308
35.
Han
,
Z.
,
Uludogan
,
A.
,
Hampson
,
G. J.
, and
Reitz
,
R. D.
,
1996
, “
Mechanism of Soot and NOx Emission Reduction Using Multiple-Injection in a Diesel Engine
,”
SAE Trans.
,
105
(
3
), pp.
837
852
.10.4271/960633
36.
Molina
,
S.
,
Desantes
,
J. M.
,
Garcia
,
A.
, and
Pastor
,
J. M.
,
2010
, “
A Numerical Investigation on Combustion Characteristics With the Use of Post Injection in DI Diesel Engines
,”
SAE
Technical Paper No. 2010-01-1260.10.4271/2010-01-1260
37.
Beatrice
,
C.
,
Belardini
,
P.
,
Bertoli
,
C.
,
Lisbona
,
M.
, and
Sebastiano
,
G. M. R.
,
2002
, “
Diesel Combustion Control in Common Rail Engines by New Injection Strategies
,”
Int. J. Engine Res.
,
3
(
1
), pp.
23
36
.10.1243/1468087021545513
38.
Arrègle
,
J.
,
Pastor
,
J. V.
,
López
,
J. J.
, and
García
,
A.
,
2008
, “
Insights on Postinjection-Associated Soot Emissions in Direct Injection Diesel Engines
,”
Combust. Flame
,
154
(
3
), pp.
448
461
.10.1016/j.combustflame.2008.04.021
39.
Dec
,
J. E.
,
1997
, “
A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging
,”
SAE Trans.
,
106
(
3
), pp.
1319
1348
.10.4271/970873
40.
Tow
,
T. C.
,
Pierpont
,
D. A.
, and
Reitz
,
R. D.
,
1994
, “
Reducing Particulate and NOx Emissions by Using Multiple Injections in a Heavy Duty D.I. Diesel Engine
,”
SAE Trans.
,
103
(
3
), pp.
1403
1417
.10.4271/940897
41.
Official Journal of the European Communities,
1990
, “
EEC Directive 90/C81/01
.”
42.
Official Journal of the European Communities,
1999
, “
Directive 1999/2096/EC
.”
43.
Pickett
,
L. M.
and
Siebers
,
D. L.
,
2004
, “
Soot in Diesel Fuel Jets: Effects of Ambient Temperature, Ambient Density, and Injection Pressure
,”
Combust. Flame
,
138
(
1
), pp.
114
135
.10.1016/j.combustflame.2004.04.006
44.
Siebers
,
D. L.
and
Higgins
,
B.
,
2001
, “
Flame Lift-Off on Direct-Injection Diesel Sprays Under Quiescent Conditions
,”
SAE Trans.
,
110
(
3
), pp.
400
421
.10.4271/2001-01-0530
45.
Pickett
,
L.
and
Siebers
,
D.
,
2006
, “
Soot Formation in Diesel Fuel Jets Near the Lift-Off Length
,”
Int. J. Engine Res.
,
7
(
2
), pp.
103
130
.10.1243/146808705X57793
46.
O’Connor
,
J.
and
Musculus
,
M.
,
2013
, “
Effects of EGR and Load on Soot in a Heavy-Duty Optical Diesel Engine With Close-Coupled Post-Injections for High Efficiency Combustion Phasing
,”
Int. J. Eng. Res.
(in press).
47.
Murphy
,
M. J.
,
Taylor
,
J. D.
, and
McCormick
,
R. L.
,
2004
, “
Compendium of Experimental Cetane Number Data
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/SR-540-36805.
48.
Idicheria
,
C.
and
Pickett
,
L.
,
2011
, “
Ignition, Soot Formation, and End-of-Combustion Transients in Diesel Combustion Under High-EGR Conditions
,”
Int. J. Engine Res.
,
12
(
4
), pp.
376
392
.10.1177/1468087411399505
49.
Musculus
,
M. P.
,
Dec
,
J. E.
, and
Tree
,
D. R.
,
2002
, “
Effects of Fuel Parameters and Diffusion Flame Lift-Off on Soot Formation in a Heavy-Duty DI Diesel Engine
,”
SAE Trans.
,
111
(
3
), pp.
1467
1489
.10.4271/2002-01-0889
50.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
51.
Kolodziej
,
C.
,
Wirojsakunchai
,
E.
,
Foster
,
D. E.
,
Schmidt
,
N.
,
Kamimoto
,
T.
,
Kawai
,
T.
,
Akard
,
M.
, and
Yoshimura
,
T.
,
2007
, “
Comprehensive Characterization of Particulate Emissions From Advanced Diesel Combustion
,”
SAE
Technical Paper No. 2007-01-1945.10.4271/2007-01-1945
52.
Lilik
,
G. K.
and
Boehman
,
A. L.
,
2011
, “
Advanced Diesel Combustion of a High Cetane Number Fuel With Low Hydrocarbon and Carbon Monoxide Emissions
,”
Energy Fuels
,
25
(
4
), pp.
1444
1456
.10.1021/ef101653h
53.
AVL,
2005
, “
Smoke Value Measurement With the Filter-Paper-Method: Application Notes
,” AVL List GmbH, Graz, Austria.
54.
Cheng
,
A.
,
Upatnieks
,
A.
, and
Mueller
,
C. J.
,
2007
, “
Investigation of Fuel Effects on Dilute, Mixing-Controlled Combustion in an Optical Direct-Injection Diesel Engine
,”
Energy Fuels
,
21
(
4
), pp.
1989
2002
.10.1021/ef0606456
55.
Chartier
,
C.
,
Andersson
,
Ö.
,
Johansson
,
B.
,
Musculus
,
M.
, and
Bobba
,
M.
,
2011
, “
Effects of Post-Injection Strategies on Near-Injector Over-Lean Mixtures and Unburned Hydrocarbon Emission in a Heavy-Duty Optical Diesel Engine
,”
SAE Int. J. Engines
,
4
(
1
), pp.
1978
1992
.10.4271/2011-01-1383
56.
Schulz
,
C.
,
Kock
,
B. F.
,
Hofmann
,
M.
,
Michelsen
,
H.
,
Will
,
S.
,
Bougie
,
B.
,
Suntz
,
R.
, and
Smallwood
,
G.
,
2006
, “
Laser-Induced Incandescence: Recent Trends and Current Questions
,”
Appl. Phys. B: Lasers Opt.
,
83
(
3
), pp.
333
354
.10.1007/s00340-006-2260-8
57.
Colban
,
W. F.
,
Kim
,
D.
,
Miles
,
P. C.
,
Oh
,
S.
,
Opat
,
R.
,
Krieger
,
R.
,
Foster
,
D.
,
Durrett
,
R. P.
, and
Gonzalez
,
D. M. A.
,
2009
, “
A Detailed Comparison of Emissions and Combustion Performance Between Optical and Metal Single-Cylinder Diesel Engines at Low Temperature Combustion Conditions
,”
SAE Int. J. Fuels Lubr.
,
1
(
1
), pp.
505
519
.10.4271/2008-01-1066
58.
Cooper
,
B.
,
Penny
,
I.
,
Beasley
,
M.
,
Greaney
,
A.
, and
Crump
,
J.
, “
Advanced Diesel Technology to Achieve Tier 2 Bin 5 Emissions Compliance in US Light-Duty Diesel Applications
,”
SAE
Technical Paper No. 2006-01-1145.10.4271/2006-01-1145
59.
Nehmer
,
D. A.
and
Reitz
,
R. D.
,
1994
, “
Measurement of the Effect of Injection Rate and Split Injections on Diesel Engine Soot and NOx Emissions
,”
SAE Trans.
,
105
(
3
), pp.
1030
1041
.10.4271/940668
60.
Bower
,
G. R.
and
Foster
,
D. E.
,
1993
, “
The Effect of Split Injection on Fuel Distribution in an Engine-Fed Combustion Chamber
,”
SAE Trans.
,
102
(
3
), pp.
1187
1202
.10.4271/930864
61.
Musculus
,
M. P. B.
,
2003
, “
Effects of the In-Cylinder Environment on Diffusion Flame Lift-Off in a DI Diesel Engine
,”
SAE Trans.
,
112
(
3
), pp.
314
337
.10.4271/2003-01-0074
62.
Musculus
,
M. P. B.
and
Kattke
,
K.
,
2009
, “
Entrainment Waves in Diesel Jets
,”
SAE Int. J. Engines
,
2
(
1
), pp.
1170
1193
.10.4271/2009-01-1355
63.
Hu
,
B.
,
Musculus
,
M. P. B.
, and
Oefelein
,
J. C.
,
2012
, “
The Influence of Large-Scale Structures on Entrainment in a Decelerating Transient Turbulent Jet Revealed by Large Eddy Simulation
,”
Phys. Fluids
,
24
(4), p.
045106
.10.1063/1.3702901
64.
Bobba
,
M. K.
,
Genzale
,
C. L.
, and
Musculus
,
M. P. B.
,
2009
, “
Effect of Ignition Delay on In-Cylinder Soot Characteristics of a Heavy Duty Diesel Engine Operating at Low Temperature Conditions
,”
SAE Int. J. Engines
,
2
(
1
), pp.
911
924
.10.4271/2009-01-0946
65.
O’Connor
,
J.
and
Musculus
,
M. P. B.
,
2014
, “
In-Cylinder Mechanisms of Soot Reduction by Close-Coupled Post-Injections as Revealed by Imaging of Soot Luminosity and Planar Laser-Induced Soot Incandescence in a Heavy-Duty Diesel Engine
,”
SAE Int. J. Engines
7
(2), p. 2014-01-1255.10.4271/2014-01-1255
66.
Glassman
,
I.
,
1989
, “
Soot Formation in Combustion Processes
,”
Proc. Combust. Inst.
,
22
(
1
), pp.
317
378
.10.1016/S0082-0784(89)80036-0
67.
O’Connor
,
J.
and
Musculus
,
M. P. B.
,
2013
, “
Soot-NL Video, 18% O2, SOI1C = 347 CAD, DOI1C = 1950 microseconds, SOI2C = 366 CAD, DOI2C = 500 microseconds
,” Sandia National Laboratories, Livermore, CA, www.sandia.gov/ecn/pub-links/cdl/120329l_annotated.php
68.
O’Connor
,
J.
and
Musculus
,
M. P. B.
,
2013
, “
Soot-NL Video, 18% O2, SOI1C = 347 CAD, DOI1C = 2350 microseconds, SOI2C = 368 CAD, DOI2C = 500 microseconds
,” Sandia National Laboratories, Livermore, CA, www.sandia.gov/ecn/pub-links/cdl/120515r_annotated.php
69.
O’Connor
,
J.
and
Musculus
,
M. P. B.
,
2013
, “
Soot-NL Video, 18% O2, SOI1C = 347 CAD, DOI1C = 2350 microseconds
,” Sandia National Laboratories, Livermore, CA, www.sandia.gov/ecn/pub-links/cdl/120515o.php
70.
Miles
,
P. C.
,
2009
, “
Turbulent Flow Structure in Direct-Injection, Swirl-Supported Diesel Engines Flow and Combustion in Reciprocating Engines
,”
Flow and Combustion in Reciprocating Engines
,
C.
Arcoumanis
and
T.
Kamimoto
, eds.,
Springer
,
Berlin
.
You do not currently have access to this content.