This work explores the dynamic stability characteristics of premixed CH4/O2/CO2 mixtures in a 50 kW swirl stabilized combustor. In all cases, the methane-oxygen mixture is stoichiometric, with different dilution levels of carbon dioxide used to control the flame temperature (Tad). For the highest Tad’s, the combustor is unstable at the first harmonic of the combustor’s natural frequency. As the temperature is reduced, the combustor jumps to fundamental mode and then to a low-frequency mode whose value is well below the combustor’s natural frequency, before eventually reaching blowoff. Similar to the case of CH4/air mixtures, the transition from one mode to another is predominantly a function of the Tad of the reactive mixture, despite significant differences in laminar burning velocity and/or strained flame consumption speed between air and oxy-fuel mixtures for a given Tad. High speed images support this finding by revealing similar vortex breakdown modes and thus similar turbulent flame geometries that change as a function of flame temperature.

References

1.
Kvamsdal
,
H.
,
Jordal
,
K.
, and
Bolland
,
O.
, 2007, “
A Quantitative Comparison of Gas Turbine Cycles with CO2 Capture
,”
Energy
,
32
, pp.
10
24
.
2.
Correa
,
S.
, 1998, “
Power Generation and Aeropropulsion Gas Turbines: From Combustion Science to Combustion Technology
,”
Symp. (Int.) Combust.
,
2
, pp.
1793
1807
.
3.
Lieuwen
,
T. C.
,
Ed.
, 2005, “
Combustion Instabilities in Gas-Turbine Engines
,”
Progess in Aeronautics and Astronautics
,
American Institute of Aeronautics and Astronautics
, Reston, VA, p.
210
.
4.
Huang
,
Y.
, and
Yang
,
V.
, 2009, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Progr. Energy Combust. Sci.
,
35
, pp.
293
364
.
5.
Kaskan
,
W.
, and
Noreen
,
A.
, 1954, “
High Frequency Oscillations of a Flame Held by a Bluff-Body
,” American Society of Mechanical Engineers, Meeting A-66, Nov 28–Dec 3,
p.
14
.
6.
Ghoniem
,
A.
,
Annaswamy
,
A.
,
Daehyun
,
W.
,
Tongxun
,
Y.
, and
Park
,
S.
, “
Shear Flow Driven Combustion Instability: Evidence, Simulation and Modeling
,”
29th International Symposium on Combustion
, Sapporo, Japan, pp.
53
60
.
7.
Nagaraja
,
S.
,
Kedia
,
K.
, and
Sujith
,
R.
, 2008, “
Characterizing Energy Growth During Combustion Instabilities: Singularvalues or Eigenvalues?
,” 32nd International Symposium on Combustion, Montreal, Canada, Aug 3–Aug 8, Vol.
32
II, pp.
2933
2940
, Compendex.
8.
Lieuwen
,
T.
, and
Zinn
,
B.
, 2000, “
Experimental Investigation of Limit Cycle Oscillations in an Unstable Gas Turbine Combustor
,” 38th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Paper AIAA-2000-0707.
9.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
, 2008, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function
,”
J. Fluid Mechan.
,
615
, pp.
139
167
.
10.
Fritsche
,
D.
,
Furi
,
M.
, and
Boulouchos
,
K.
, 2007, “
An Experimental Investigation of Thermoacoustic Instabilities In a Premixed Swirl-Stabilized Flame
,”
Combust. Flame
,
151
, pp.
29
36
.
11.
Speth
,
R.
, and
Ghoniem
,
A.
, 2008, “
Using a Strained Flame Model to Collapse Dynamic Mode Data in a Swirl-Stabilized Syngas Combustor
,” 32nd International Symposium on Exhibit, Reno, NV, Aug 3–Aug 8, Vol.
32
II, pp.
2993
3000
.
12.
Ghoniem
,
A.
,
Speth
,
R.
,
Altay
,
H.
, and
Hudgins
,
D.
, 2008, “
Dynamics and Stability Limits of Syngas Combustion in a Swirl-Stabilized Combustor
,”
2008 ASME Turbo Expo, Berlin, Germany, Jun 9–Jun 13
, Vol.
3
, pp.
767
776
.
13.
Liu
,
F.
,
Guo
,
H.
, and
Smallwood
,
G.
, 2003, “
The Chemical Effect of CO2 Replacement of N2 in Air on the Burning Velocity of CH4 and H2 Premixed Flames
,”
Combust. Flame
,
133
, pp.
495
497
.
14.
Zhu
,
D.
,
Egolfopoulos
,
F.
, and
Law
,
C.
, 1989, “
Experimental and Numerical Determination of Laminar flame Speeds of Methane/(Ar, N2, CO2)-Air Mixtures as Function of Stoichiometry, Pressure, and Flame Temperature
,”
Symp. (Int.) Combust.
,
22
, pp.
1537
1545
.
15.
LaBry
,
Z.
,
Shanbhogue
,
S.
,
Speth
,
R.
, and
Ghoniem
,
A.
, 2010, “
Flow Structures in a Lean-Premixed Swirl-Stabilized Combustor With Microjet Air Injection
,”
Proc Combust. Inst.
,
33
, pp.
1575
1581
.
16.
Speth
,
R. L.
,
Marzouk
,
Y. M.
, and
Ghoniem
,
A. F.
, 2005, “
Impact of Hydrogen Addition on Flame Response to Stretch and Curvature
,” AIAA Paper No. 2005-0143.
17.
Zhang
,
Q.
,
Noble
,
D.
,
Shanbhogue
,
S.
, and
Lieuwen
,
T.
, 2007, “
Impacts of Hydrogen Addition on Near-Blowout Dynamics in a Swirling Combustor
,”
Proc. ASME Turbo Expo
,
2
, pp.
189
198
.
18.
Muruganandam
,
T.
, and
Seitzman
,
J.
, 2005, “
Characterization of Extinction Events Near Blowout in Swirl-Dump Combustors
,” 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Tucson, AZ.
You do not currently have access to this content.