Plasma spray-physical vapor deposition (PS-PVD) is a low pressure plasma spray technology recently developed by Sulzer Metco AG (Switzerland) to deposit coatings out of the vapor phase. PS-PVD is developed on the basis of the well established low pressure plasma spraying technology. In comparison to conventional vacuum plasma spraying and low pressure plasma spraying, these new processes use a high energy plasma gun operated at a work pressure below 2 mbar. This leads to unconventional plasma jet characteristics, which can be used to obtain specific and unique coatings. An important new feature of PS-PVD is the possibility to deposit a coating not only by melting the feed stock material, which builds up a layer from liquid splats, but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional PVD technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and electron beam-physical vapor deposition (EB-PVD) coatings. In contrast to EB-PVD, PS-PVD incorporates the vaporized coating material into a supersonic plasma plume. Due to the forced gas stream of the plasma jet, complex shaped parts like multi-airfoil turbine vanes can be coated with columnar thermal barrier coatings using PS-PVD. Even shadowed areas and areas, which are not in the line-of-sight to the coating source, can be coated homogeneously. This paper reports on the progress made by Sulzer Metco to develop a thermal spray process to produce coatings out of the vapor phase. Columnar thermal barrier coatings made of yttria stabilized zircona are optimized to serve in a turbine engine. This includes coating properties like strain tolerance and erosion resistance but also the coverage of multiple air foils.

1.
Ambühl
,
P.
, and
Meyer
,
P.
, 1999, “
Thermal Coating Technology in Controlled Atmospheres (CHAMPRO™)
,”
Proceedings of the ITSC
, Düsseldorf, Germany,
E.
Lugscheider
and
P. A.
Kammer
, eds. (Düsseldorf, Germany),
DVS-Verlag
, pp.
291
292
.
2.
Terry
,
S. G.
,
Litty
,
J. R.
, and
Levi
,
C. G.
, 1999, “
Evolution of Porosity and Texture in Thermal Barrier Coatings Grown by EB-PVD
,”
Elevated Temperature Coatings: Science and Technology III
,
Proceedings of TMS Annual Meeting
, San Diego, CA,
J.
Hampikian
and
N. B.
Dahotre
, eds.,
The Minerals, Metals and Materials Society
,
Warrendale, PA
, pp.
13
25
.
3.
William
,
B. R.
, and
Douglas
,
E. J.
, “
Electron Beam Physical Vapor Deposition Apparatus
,” U.S. Patent No. 6,983,718.
4.
Kenneth
,
M.
, “
Thermal Barrier Coating
,” U.S. Patent No. 6,689,487.
5.
Gindrat
,
M.
,
Dorier
,
J. -L.
,
Hollenstein
,
Ch.
,
Loch
,
M.
,
Refke
,
A.
,
Salito
,
A.
, and
Barbezat
,
G.
, 2002, “
Effect of Specific Operating Conditions on the Properties of LPPS Plasma Jets Expanding at Low Pressure
,”
Proceedings of the Third ITSC
, Essen, Germany,
E.
Lugscheider
and
C. C.
Berndt
, eds. (Essen, Germany),
DVS-Verlag
, pp.
459
464
.
6.
Muehlberger
,
E.
, 1998, “
Method of Forming Uniform Thin Coatings on Large Substrates
,” U.S. Patent No. 5,853,815.
7.
Dorier
,
J. -L.
,
Gindrat
,
M.
,
Hollenstein
,
Ch.
,
Loch
,
M.
,
Refke
,
A.
,
Salito
,
A.
, and
Barbezat
,
G.
, 2001, “
Plasma Jet Properties in a New Process at Low Pressure for Large Area Thin Film Deposition
,”
Proceedings of the Second ITSC
, Singapore,
C. C.
Berndt
,
K. A.
Khor
and
E.
Lugscheider
, eds. (Singapore),
ASM International
, pp.
759
764
.
8.
Refke
,
A.
,
Hawley
,
D.
,
Doesburg
,
J.
, and
Schmid
,
R.
, 2005, “
LPPS Thin Film Technology for the Application of TBC Systems
,”
Proceedings of the International Thermal Spray Conference
, Basel, Switzerland, May 2–4,
E.
Lugscheider
and
D.
von Hofe
, eds. (Basel, Switzerland),
DVS-Verlag
, pp.
438
443
.
9.
Refke
,
A.
,
Barbezat
,
G.
,
Dorier
,
J. L.
,
Gindrat
,
M.
, and
Hollenstein
,
Ch.
, 2003, “
Characterization of LPPS Processes Under Various Spray Conditions for Potential Applications
,”
Proceedings of the Fourth ITSC
, Orlando, Florida,
R.
Basil
,
B. R.
Marple
, and
Ch.
Moreau
, eds. (Orlando, FL),
ASM International
, pp.
581
588
.
10.
Gindrat
,
M.
,
Refke
,
A.
, and
Schmid
,
R.
, 2007, “
Process Characterization of LPPS Thin Film Processes With Optical Diagnostics
,”
Proceedings of the Seventh ITSC
, Beijing, China, May 14–16,
B. R.
Marple
,
M. M.
Hyland
,
Y. -C.
Lau
,
C. -J.
Li
,
R. S.
Lima
, and
G.
Montavon
, eds. (Beijing, China),
ASM International
, pp.
705
710
.
11.
Jodoin
,
B.
,
Gindrat
,
M.
,
Dorier
,
J. -L.
,
Hollenstein
,
Ch.
,
Loch
,
M.
, and
Barbezat
,
G.
, 2002, “
Modelling and Diagnostic of a Supersonic DC Plasma Jet Expanding at Low Pressure
,”
Proceedings of the Third ITSC
, Essen, Germany,
E.
Lugscheider
and
C. C.
Berndt
, eds. (Essen, Germany),
DVS-Verlag
, pp.
716
720
.
12.
Flores Renteria
,
A.
,
Saruhan
,
B.
,
Schultz
,
U.
,
Raetzer-Scheibe
,
H. -J.
,
Haug
,
J.
, and
Wiedemann
,
A.
, 2006, “
Effect of Morphology on Thermal Conductivity of EB-PVD PYSZ TBCs
,”
Surf. Coat. Technol.
0257-8972,
201
(
6
), pp.
2611
2620
.
13.
Schulz
,
U.
,
Terry
,
S. G.
, and
Levi
,
C. G.
, 2003, “
Microstructure and Texture of EB-PVD TBCs Grown Under Different Rotation Modes
,”
Mater. Sci. Eng., A
0921-5093,
360
, pp.
319
329
.
14.
R.
Hillery
, 1996,
Coatings for High-Temperature Structural Materials: Trends and Opportunities
(Washington, DC),
National Academy Press
, pp.
26
33
.
15.
Lau
,
H.
,
Leyens
,
C.
,
Schulz
,
U.
, and
Friedrich
,
C.
, 2003, “
Influence of Bond Coat Pre-Treatment and Surface Topology on the Lifetime of EB-PVD TBCs
,”
Surf. Coat. Technol.
0257-8972,
165
(
3
), pp.
217
223
.
16.
Tolpygo
,
V. K.
, and
Clarke
,
D. R.
, 2005, “
The Effect of Oxidation Pre-Treatment on the Cyclic Life of EB-PVD Thermal Barrier Coatings With Platinum-Aluminide Bond Coats
,”
Surf. Coat. Technol.
0257-8972,
200
(
5-6
), pp.
1276
1281
.
17.
Spitsberg
,
I.
, and
More
,
K.
, 2006, “
Effect of Thermally Grown Oxide (TGO) Microstructure on the Durability of TBCs With PtNiAl Diffusion Bond Coats
,”
Mater. Sci. Eng., A
0921-5093,
417
, pp.
322
333
.
You do not currently have access to this content.