A displacement based 3D finite element model is developed to simulate thermal stress induced by high temperature and temperature gradient during diesel particulate filter (DPF) regeneration. The temperature field predicted by 3D regeneration model from previous work is used as input. This finite element model agrees well with commercial software. It is a self-contained package capable of implementing meshing body, assembling global stiffness matrix and solving final equilibrium equations. Numerical simulation indicates that it is peak temperature rather than temperature gradient that leads to higher compressive thermal stress during regeneration. The maximum stress always appears at the channel corner located at the end of DPF. Parametric studies are performed to investigate the effects of DPF design on pressure drop, regeneration temperature, and thermal stress. This model provides insights into the complicated DPF working mechanism, and it can be used as design tools to reduce filter pressure drop while enhance its short term and long term durability.

1.
Lamon
,
J.
, and
Pherson
,
D.
, 1991, “
Thermal Stress Failure of Ceramics under Repeated Rapid Heatings
,”
J. Am. Ceram. Soc.
0002-7820,
74
, pp.
1188
1196
.
2.
Bissett
,
E. J.
, 1984, “
Mathematical Model of the Thermal Regeneration of a Wall-Flow Monolith Diesel Particulate Filter
,”
Chem. Eng. Sci.
0009-2509,
39
, pp.
1233
1244
.
3.
Bissett
,
E. J.
, and
Shadman
,
F.
, 1985, “
Thermal Regeneration of Diesel Particulate Monolithic Filters
,”
AIChE J.
0001-1541,
31
, pp.
753
758
.
4.
Bissett
,
E. J.
, 1985, “
Thermal Regeneration of Particle Filters With Large Conduction
,”
Math. Modell.
0270-0255,
6
, pp.
1
18
.
5.
Konstandopoulos
,
A. G.
, and
Johnson
,
J. H.
, 1989, “
Wall-Flow Diesel Particulate Filter-Their Pressure Drop and Collection Efficiency
,”
SAE Trans.
0096-736X,
98
, pp.
625
647
.
6.
Konstandopoulos
,
A. G.
, “
Flow Resistance Descriptors for Diesel Particulate Filters: Definitions, Measurements and Testing
,” SAE Paper No. 2003-01-0846.
7.
Opris
,
C. N.
, and
Johnson
,
J. H.
, 1998, “
A 2-D Computational Model Describing the Flow and Filtration Characteristics of a Ceramic Diesel Particulate Trap
,” SAE Paper No. 980545.
8.
Opris
,
C. N.
, and
Johnson
,
J. H.
, 1998, “
A 2-D Computational Model Describing the Heat Transfer, Reaction Kinetics and Regeneration Characteristics of A Ceramic Diesel Particulate Trap
,”
SAE Trans.
0096-736X,
107
, pp.
537
544
.
9.
Haralampous
,
O. A.
, and
Koltsakis
,
G. C.
, 2004, “
Oxygen Diffusion Modeling in Diesel Particulate Filter Regeneration
,”
AIChE J.
0001-1541,
50
, pp.
2008
2019
.
10.
Haralampous
,
O. A.
, and
Koltsakis
,
G. C.
, 2004, “
Back-Diffusion Modeling of NO2 in Catalyzed Diesel Particulate Filters
,”
Ind. Eng. Chem. Res.
0888-5885,
43
, pp.
875
883
.
11.
Guo
,
Z.
, and
Zhang
,
Z.
, 2007, “
Hybrid Modeling and Simulation of Multidimensional Processes for Diesel Particulate Filter During Loading and Regeneration
,”
Numer. Heat Transfer, Part A
1040-7782,
51
, pp.
519
539
.
12.
Suresh
,
A.
,
Khan
,
A.
, and
Johnson
,
J. H.
, 2000, “
An Experimental and Modeling Study of Cordierite Traps-Pressure Drop and Permeability of Clean and Particulate Loaded Traps
,” SAE Paper No. 2000-01-0476.
13.
Yezerets
,
A.
,
Currier
,
N. W.
, and
Eadler
,
H. A.
, 2003, “
Experimental Determination of the Kinetics of Diesel Soot Oxidation by O2-Modeling Consequences
,”
SAE Trans.
0096-736X,
112
, pp.
537
544
.
14.
Hanamura
,
K.
,
Suzuki
,
T.
, and
Tanaka
,
T.
, 2003, “
Visualization of Combustion Phenomena in Regeneration of Diesel Particulate Filter
,”
SAE Trans.
0096-736X,
112
, pp.
566
573
.
15.
Haralampous
,
O. C.
,
Koltsakis
,
G. C.
, and
Samaras
,
Z. C.
, 2003, “
Partial Regeneration in Diesel Particulate Filters
,” SAE Paper No. 2003-01-1881.
16.
Konstandopoulos
,
A. G.
,
Kostoglou
,
M.
,
Housiada
,
P.
,
Vlachos
,
N.
, and
Zarvalis
,
D.
, 2003, “
Multichannel Simulation of Soot Oxidation in Diesel Particulate Filters
,”
SAE Trans.
0096-736X,
112
, pp.
587
604
.
17.
Pontikakis
,
G.
, and
Stamatelos
,
A.
, 2006, “
Three-Dimensional Catalytic Regeneration Modeling of SiC Diesel Particulate Filters
,”
J. Eng. Gas Turbines Power
0742-4795,
128
, pp.
421
433
.
18.
Aris
,
R.
, 1979, “
De Exemblo Simulacrorum Continuorum Discritalumque
,”
Arch. Ration. Mech. Anal.
0003-9527,
70
, pp.
203
209
.
19.
Kuki
,
T.
,
Miyairi
,
Y.
,
Kasai
,
Y.
,
Miyazaki
,
M.
, and
Miwa
,
S.
, 2004, “
Study on Reliability of Wall-Flow Type Diesel Particulate Filter
,” SAE Paper No. 2004-01-0959.
20.
Rao
,
S. S.
, 2005,
The Finite Element Method in Engineering
, 4th ed.,
Elsevier Butterworth-Heinemann
,
Boston, MA
.
21.
Hashin
,
Z.
, 1983, “
Analysis of Composite-Materials—A Survey
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
481
505
.
22.
Roberts
,
A. P.
, and
Garboczi
,
E. J.
, 2000, “
Elastic Properties of Model Porous Ceramics
,”
J. Am. Ceram. Soc.
0002-7820,
83
, pp.
3041
3048
.
23.
Coble
,
R. L.
, and
Kingery
,
W. D.
, 1956, “
Effect of Porosity on Physical Properties of Sintered Alumina
,”
J. Am. Ceram. Soc.
0002-7820,
39
, pp.
377
385
.
You do not currently have access to this content.