Interlaminar crack growth resistances were evaluated for five different SiC fiber-reinforced ceramic matrix composites (CMCs) including three gas-turbine grade melt-infiltrated SiCSiC composites. Modes I and II crack growth resistances, GI and GII, were determined at ambient temperature using double cantilever beam and end notched flexure methods, respectively. The CMCs exhibited GI=200500Jm2 and GII=200900Jm2. All the composites (except for one SiC/CAS composite) showed a rising R-curve behavior either in mode I or in mode II, presumably attributed to fiber bridging (in modes I and II) and frictional constraint (mode II) in the wake region of a propagating crack. A glass fiber-reinforced epoxy polymer matrix composite showed typically two to three times greater GI and eight times greater GII, compared to the CMCs. An experimental error analysis regarding the effect of the off-the-center of a crack plane on GI and GII was also made.

1.
Brondsted
,
P.
,
Heredia
,
F. E.
, and
Evans
,
A. G.
, 1994, “
In-Plane Shear Properties of 2-D Ceramic Composites
,”
J. Am. Ceram. Soc.
0002-7820,
77
(
10
), pp.
2569
2574
.
2.
Lara-Curzio
,
E.
, and
Ferber
,
M. K.
, 1997, “
Shear Strength of Continuous Fiber Ceramic Composites
,”
American Society for Testing and Material
, ASTM Report No. STP 1309, p.
31
.
3.
Fang
,
N. J. J.
, and
Chou
,
T. W.
, 1993, “
Characterization of Interlaminar Shear Strength of Ceramic Matrix Composites
,”
J. Am. Ceram. Soc.
0002-7820,
76
(
10
), pp.
2539
2548
.
4.
Ünal
,
Ö.
, and
Bansal
,
N. P.
, 2002, “
In-Plane and Interlaminar Shear Strength of a Unidirectional Hi-Nicalon Fiber-Reinforced Celsian Matrix Composite
,”
Ceram. Int.
0272-8842,
28
, pp.
527
540
.
5.
Choi
,
S. R.
, and
Bansal
,
N. P.
, 2004, “
Shear Strength as a Function of Test Rate for SiCf∕BSAS Ceramic Matrix Composite at Elevated Temperature
,”
J. Am. Ceram. Soc.
0002-7820,
87
(
10
), pp.
1912
1918
.
6.
Choi
,
S. R.
,
Bansal
,
N. P.
,
Calomino
,
A. M.
, and
Verrilli
,
M. J.
, 2005, “
Shear Strength Behavior of Ceramic Matrix Composites at Elevated Temperatures
,”
Advances in Ceramic Matrix Composites X
,
J. P.
Singh
,
N. P.
Bansal
, and
W. M.
Kriven
, eds.,
The American Ceramic Society
,
Westerville, Ohio
;
2005,
Ceram. Trans.
1042-1122,
165
, pp.
131
145
.
7.
Choi
,
S. R.
, and
Bansal
,
N. P.
, 2006, “
Interlaminar Tension/Shear Properties and Stress Rupture in Shear of Various Continuous Fiber-Reinforced Ceramic Matrix Composites
,”
Advances in Ceramic Matrix Composites XI
,
N. P.
Bansal
,
J. P.
Singh
, and
W. M.
Kriven
, eds,
The American Ceramic Society
,
Westerville, Ohio
;
2006,
Ceram. Trans.
1042-1122,
175
, pp.
119
134
.
8.
Yun
,
H. M.
, and
DiCarlo
,
J. A.
, 2004, “
Through-Thickness Properties of 2D Woven SiC∕SiC Panels With Various Microstructures
,”
Ceram. Eng. Sci. Proc.
0196-6219,
25
(
4
), pp.
71
78
.
9.
Zawada
,
L. P.
, 1998, “
Longitudinal and Transthickness Tensile Behavior of Several Oxide/Oxide Composites
,”
Ceram. Eng. Sci. Proc.
0196-6219,
19
(
3
), pp.
327
339
.
10.
Lara-Curzio
,
E.
,
Bowers
,
D.
, and
Ferber
,
M. K.
, 1996, “
The Interlaminar Tensile and Shear Behavior of a Unidirectional C-C Composite
,”
J. Nucl. Mater.
0022-3115,
230
, pp.
226
232
.
11.
Mall
,
S.
,
Vozzola
,
R. P.
, and
Zawada
,
L.
, 1989, “
Characterization of Fracture in Fiber-Reinforced Ceramic Composites Under Shear Loading
,”
J. Am. Ceram. Soc.
0002-7820,
72
(
7
), pp.
1175
1178
.
12.
Martin
,
R. H.
, 1977, “
Delamination Characterization of Woven Glass/Polyester Composites
,”
J. Compos. Technol. Res.
0884-6804,
19
(
1
), pp.
20
28
.
13.
Sela
,
N.
, and
Ishai
,
O.
, 1989, “
Interlaminar Fracture Toughness and Toughening of Laminated Composite Materials: Review
,”
Composites
0010-4361,
20
(
5
), pp.
423
435
.
14.
Carlsson
,
L. A.
,
Gillespie
,
J. W.
, and
Pipes
,
R. B.
, 1986, “
On the Analysis and Design of the End Notched Flexure (ENF) Specimen for Mode II Testing
,”
J. Compos. Mater.
0021-9983,
20
, pp.
594
604
.
15.
O’Brien
,
T. K.
, and
Martin
,
R. H.
, 1993, “
Round Robin Testing for Mode I Interlaminar Fracture Toughness of Composite Materials
,”
J. Compos. Technol. Res.
0884-6804,
15
(
4
), pp.
269
281
.
16.
Williams
,
J. G.
, 1989, “
The Fracture Mechanics of Delamination Tests
,”
J. Strain Anal. Eng. Des.
0309-3247,
24
(
4
), pp.
207
214
.
17.
Kumar
,
D. V. T. G. P.
, and
Prasad
,
B. K. R.
, 2003, “
Higher-Order Beam Theories for Mode II Fracture of Unidirectional Composites
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
70
, pp.
840
852
.
18.
Smiley
,
A. J.
, and
Pipes
,
R. B.
, 1987, “
Rate Effects on Mode I Interlaminar Fracture Toughness in Composite Materials
,”
J. Compos. Mater.
0021-9983,
21
, pp.
670
687
.
19.
Brewer
,
D.
, 1999, “
HSR/EPM Combustor Materials Development Program
,”
Mater. Sci. Eng., A
0921-5093,
261
, pp.
284
291
.
20.
Calomino
,
A. M.
, 2002, “
Mechanical Behavior and Characterization/1316°C In-Situ BN Coated MI∕SiC∕SiC
,”
Technology Forum
,
UEET
, Glenn Research Center, National Aeronautics and Space Administration,
Cleveland, Ohio
, October.
21.
ASTM C 1259
, 2006, “
Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s for Advanced Ceramics by Impulse Excitation of Vibration
,”
Annual Book of ASTM Standards
,
American Society for Testing and Materials
,
West Conshohocken, PA
, Vol.
15.01
.
22.
Worthem
,
D. W.
, 1995, “
Thermomechanical Fatigue Behavior of Three CFCCs
,”
National Aeronautics and Space Administration
, Glenn Research Center, NASA Report No. CR-195441.
23.
Choi
,
S. R.
, and
Gyekenyesi
,
J. P.
, 2005, “
Load-Rate Dependency of Ultimate Tensile Strength in Ceramic Matrix Composites at Elevated Temperatures
,”
Int. J. Fatigue
0142-1123,
27
, pp.
503
510
.
24.
Choi
,
S. R.
,
Bhatt
,
R. T.
,
Pereira
,
J. M.
, and
Gyekenyesi
,
J. P.
, 2004, “
Foreign Object Damage Behavior of a SiC∕SiC Composite at Ambient and Elevated Temperatures
,” ASME Paper No. GT2004-53910.
25.
ASTM D 5528
, 2005, “
Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites
,”
Annual Book of ASTM Standards
,
American Society for Testing and Materials
,
West Conshohocken, PA
.
26.
See any text, e.g.,
Broek
,
D.
, 1983,
Elementary Engineering Fracture Mechanics
,
Martinus Nijhoff
,
Boston
.
27.
Singh
,
D.
, and
Shetty
,
D. K.
, 1989, “
Fracture Toughness of Polycrystalline Ceramics in Combined Mode I and Mode II Loading
,”
J. Am. Ceram. Soc.
0002-7820,
72
(
1
), pp.
78
84
.
28.
Choi
,
S. R.
,
Kowalik
,
R. W.
, and
Alexander
,
D. J.
, 2007, “
Mode I and Mode II Interlaminar Crack Growth Resistances of Ceramic Matrix Composites at Ambient Temperature
,” Naval Air Systems Command, Report No. NAWCADPAX/TR-2007/4.
29.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
, 2000,
The Stress Analysis of Cracks Handbook
,
ASME
,
New York
, p.
418
.
You do not currently have access to this content.