Abstract

This work studies a particle injection rig to understand how its design affects particle impingement and rebound from a target plate. The motivation behind this study is to understand how dust ingestion affects aviation gas-turbine engines. The particles are injected into a constant area duct upstream of the plate, and they exit through a converging nozzle. The major result concerns how particles respond differently to changes in the flow field based on their diameter. Near the plate, small particles follow the flow streamlines which causes them to both significantly slow down and to disperse in all directions. However, large particles move ballistically, so they impact the plate with nearly the same velocity and orientation they had at the duct exit. Reynolds-averaged Navier–Stokes (RANS) simulations are compared to large eddy simulation (LES). While RANS are capable of predicting mean particle impact statistics, they display narrower statistical variation than LES, suggesting that particle dispersion is underpredicted in RANS.

References

1.
Tabakoff
,
W.
,
Hamed
,
A.
, and
Murugan
,
D. M.
,
1996
, “
Effect of Target Materials on the Particle Restitution Characteristics for Turbomachinery Application
,”
J. Propul. Power
,
12
(
2
), pp.
260
266
.10.2514/3.24022
2.
Hamed
,
A.
,
Tabakoff
,
W.
, and
Wenglarz
,
R.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
350
360
.10.2514/1.18462
3.
Clarkson
,
R. J.
,
Majewicz
,
E. J.
, and
Mack
,
P.
,
2016
, “
A Re-Evaluation of the 2010 Quantitative Understanding of the Effects Volcanic Ash Has on Gas Turbine Engines
,”
Proc. Inst. Mech. Eng., Part G J. Aerosp. Eng.
,
230
(
12
), pp.
2274
2291
.10.1177/0954410015623372
4.
Duarte
,
C. A. R.
,
de Souza
,
F. J.
, and
dos Santos
,
V. F.
,
2016
, “
Mitigating Elbow Erosion With a Vortex Chamber
,”
Powder Technol.
,
288
, pp.
6
25
.10.1016/j.powtec.2015.10.032
5.
Gomes de Freitas
,
A.
,
Furlan de Oliveira
,
V.
,
Oliveira Lima
,
Y.
,
Borges dos Santos
,
R.
, and
Alberto Martinez Riascos
,
L.
,
2021
, “
Energy Efficiency in Pneumatic Conveying: Performance Analysis of an Alternative Blow Tank
,”
Part. Sci. Technol.
,
39
(
7
), pp.
868
876
.10.1080/02726351.2020.1850574
6.
de Freitas
,
A. G.
,
de Oliveira
,
V. F.
,
dos Santos
,
R. B.
,
Riascos
,
L. A. M.
, and
Zou
,
R.
,
2022
, “
Optimization Method for Pneumatic Conveying Parameters and Energy Consumption Performance Analysis of a Compact Blow Tank
,”
ASME J. Pressure Vessel Technol.
,
144
(
6
), p.
064504
.10.1115/1.4055111
7.
Tabakoff
,
W.
,
Grant
,
G.
, and
Ball
,
R.
,
1974
, “
An Experimental Investigation of Certain Aerodynamic Effects on Erosion
,”
AIAA
Paper No. 74-639.10.2514/6.1974-639
8.
Tabakoff
,
W.
,
1984
, “
Review-Turbomachinery Performance Deterioration Exposed to Solid Particulates Environment
,”
ASME J. Fluids Eng.
,
106
(
2
), pp.
125
134
.10.1115/1.3243088
9.
Tabakoff
,
W.
,
Malak
,
M. F.
, and
Hamed
,
A.
,
1987
, “
Laser Measurements of Solid-Particle Rebound Parameters Impacting on 2024 Aluminum and 6a1-4v Titanium Alloys
,”
AIAA J.
,
25
(
5
), pp.
721
726
.10.2514/3.9688
10.
Tabakoff
,
W.
,
1991
, “
Measurements of Particles Rebound Characteristics on Materials Used in Gas Turbines
,”
J. Propul. Power
,
7
(
5
), pp.
805
813
.10.2514/3.23395
11.
Grant
,
G.
, and
Tabakoff
,
W.
,
1975
, “
Erosion Prediction in Turbomachinery Resulting From Environmental Solid Particles
,”
J. Aircr.
,
12
(
5
), pp.
471
478
.10.2514/3.59826
12.
Yan
,
C.
,
Chen
,
W.
,
Zhao
,
Z.
, and
Liu
,
L.
,
2020
, “
A Probability Prediction Model of Erosion Rate for Ti-6Al-4V on High-Speed Sand Erosion
,”
Powder Technol.
,
364
, pp.
373
381
.10.1016/j.powtec.2020.01.058
13.
Oka
,
Y. I.
,
Okamura
,
K.
, and
Yoshida
,
T.
,
2005
, “
Practical Estimation of Erosion Damage Caused by Solid Particle Impact: Part 1: Effects of Impact Parameters on a Predictive Equation
,”
Wear
,
259
(
1–6
), pp.
95
101
.10.1016/j.wear.2005.01.039
14.
Oka
,
Y. I.
, and
Yoshida
,
T.
,
2005
, “
Practical Estimation of Erosion Damage Caused by Solid Particle Impact: Part 2: Mechanical Properties of Materials Directly Associated With Erosion Damage
,”
Wear
,
259
(
1–6
), pp.
102
109
.10.1016/j.wear.2005.01.040
15.
Hufnagel
,
M.
,
Werner-Spatz
,
C.
,
Koch
,
C.
, and
Staudacher
,
S.
,
2018
, “
High-Speed Shadowgraphy Measurements of an Erosive Particle-Laden Jet Under High-Pressure Compressor Conditions
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p. 012604.10.1115/1.4037689
16.
Boulanger
,
A.
,
Patel
,
H.
,
Hutchinson
,
J.
,
DeShong
,
W.
,
Xu
,
W.
,
Ng
,
W.
, and
Ekkad
,
S.
,
2016
, “
Preliminary Experimental Investigation of Initial Onset of Sand Deposition in the Turbine Section of Gas Turbines
,”
ASME
Paper No. GT2016-56059.10.1115/GT2016-56059
17.
Delimont
,
J. M.
,
Murdock
,
M. K.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2014
, “
Effect of Near Melting Temperatures on Microparticle Sand Rebound Characteristics at Constant Impact Velocity
,”
ASME
Paper No. GT2014-25686.10.1115/GT2014-25686
18.
Delimont
,
J. M.
,
Murdock
,
M. K.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
Effect of Temperature on Microparticle Rebound Characteristics at Constant Impact Velocity–Part II
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
112604
.10.1115/1.4030313
19.
Delimont
,
J. M.
,
Murdock
,
M. K.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
Effect of Temperature on Microparticle Rebound Characteristics at Constant Impact Velocity–Part I
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
112603
.10.1115/1.4030312
20.
Takaffoli
,
M.
, and
Papini
,
M.
,
2012
, “
Material Deformation and Removal Due to Single Particle Impacts on Ductile Materials Using Smoothed Particle Hydrodynamics
,”
Wear
,
274–275
, pp.
50
59
.10.1016/j.wear.2011.08.012
21.
Di
,
J.
,
Wang
,
S. S.
,
Cai
,
L. X.
,
Cheng
,
S. F.
, and
Wu
,
C.
,
2015
, “
Study on Rebound Characteristics of Fine Spherical Particles Impacting an AISI 403 Steel With High Velocity
,”
ASME
Paper No. GT2015-43058.10.1115/GT2015-43058
22.
Okita
,
R.
,
Zhang
,
Y.
,
McLaury
,
B. S.
,
Shirazi
,
S. A.
, and
Rybicki
,
E. F.
,
2010
, “
Experimental and CFD Investigations to Evaluate the Effects of Fluid Viscosity and Particle Size on Erosion Damage in Oil and Gas Production Equipment
,”
ASME
Paper No. FEDSM-ICNMM2010-31271.10.1115/FEDSM-ICNMM2010-31271
23.
Okita
,
R.
,
Zhang
,
Y.
,
McLaury
,
B. S.
,
Shirazi
,
S. A.
, and
Rybicki
,
E. F.
,
2011
, “
Effects of Viscosity, Particle Size, and Particle Shape on Erosion in Gas and Liquid Flows
,”
ASME
Paper No. AJK2011-09023.10.1115/AJK2011-09023
24.
Hufnagel
,
M.
,
Staudacher
,
S.
, and
Koch
,
C.
,
2018
, “
Experimental and Numerical Investigation of the Mechanical and Aerodynamic Particle Size Effect in High-Speed Erosive Flows
,”
ASME J. Eng. Gas Turbines Power
,
140
(
10
), p.
102604
.10.1115/1.4039830
25.
Israel
,
R.
, and
Rosner
,
D. E.
,
1982
, “
Use of a Generalized Stokes Number to Determine the Aerodynamic Capture Efficiency of Non-Stokesian Particles From a Compressible Gas Flow
,”
Aerosol Sci. Technol.
,
2
(
1
), pp.
45
51
.10.1080/02786828308958612
26.
Wessel
,
R. A.
, and
Righi
,
J.
,
1988
, “
Generalized Correlations for Inertial Impaction of Particles on a Circular Cylinder
,”
Aerosol Sci. Technol.
,
9
(
1
), pp.
29
60
.10.1080/02786828808959193
27.
Miranda
,
C.
, and
Palmore
, and
J.
Jr.
,
2020
, “
High Stokes Number Droplets in Homogeneous Isotropic Turbulent Flow
,”
Eastern States Section of the Combustion Institute, Columbia, SC, Mar. 8–11
.
28.
Hwang
,
W.
, and
Eaton
,
J. K.
,
2006
, “
Homogeneous and Isotropic Turbulence Modulation by Small Heavy (St 50) Particles
,”
J. Fluid Mech.
,
564
, pp.
361
393
.10.1017/S0022112006001431
29.
Quinn
,
A.
,
Daniel
,
K.
,
Lowe
,
K. T.
, and
Ng
,
W. F.
,
2019
, “
Outdoor Acoustic Measurements of the Virginia Tech Heated Supersonic Jet Rig Using Ground Microphones
,”
AIAA
Paper No. 2019-1581.10.2514/6.2019-1581
30.
Daniel
,
K.
,
Mayo
,
D. E.
,
Lowe
,
K. T.
, and
Ng
,
W.
,
2019
, “
Space-Time Description of the Density Near-Field in a Non-Uniformly Heated Jet
,”
AIAA
Paper No. 2019-2474.10.2514/6.2019- 2474
31.
Olshefski
,
K.
,
Collins
,
A.
,
Coulon
,
T.
,
Lowe
,
T.
, and
Ng
,
W.
,
2022
, “
Development of an Anisokinetic Particle Sampling Probe for Use in a Gas Turbine Engine Compressor
,”
Front. Mech. Eng.
,
8
, pp. 1–15. 10.3389/fmech.2022.951986
32.
Bons
,
J. P.
,
Prenter
,
R.
, and
Whitaker
,
S.
,
2017
, “
A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery
,”
ASME J. Turbomach.
,
139
(
8
), p.
081009
.10.1115/1.4035921
33.
Whitaker
,
S. M.
,
Peterson
,
B.
, and
Bons
,
J. P.
,
2014
, “
Evaluation of Coefficients of Restitution Using High Speed Particle Shadow Velocimetry With Application to Particle Separators for Gas Turbine Engines
,”
AIAA
Paper No. 2014-1155.10.2514/6.2014-1155
34.
Scheiman
,
J.
, and
Brooks
,
J. D.
,
1981
, “
Comparison of Experimental and Theoretical Turbulence Reduction From Screens, Honeycomb, and Honeycomb-Screen Combinations
,”
J. Aircr.
,
18
(
8
), pp.
638
643
.10.2514/3.57538
35.
Dryden
,
H. L.
, and
Schubauer
,
G. B.
,
1947
, “
The Use of Damping Screens for the Reduction of Wind-Tunnel Turbulence
,”
J. Aeronaut. Sci.
,
14
(
4
), pp.
221
228
.10.2514/8.1324
36.
Roach
,
P. E.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.10.1016/0142-727X(87)90001-4
37.
Balachandar
,
S.
, and
Eaton
,
J. K.
,
2010
, “
Turbulent Dispersed Multiphase Flow
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
111
133
.10.1146/annurev.fluid.010908.165243
38.
Brandt
,
L.
, and
Coletti
,
F.
,
2022
, “
Particle-Laden Turbulence: Progress and Perspectives
,”
Annu. Rev. Fluid Mech.
,
54
(
1
), pp.
159
189
.10.1146/annurev-fluid-030121-021103
39.
Vijiapurapu
,
S.
, and
Cui
,
J.
,
2010
, “
Performance of Turbulence Models for Flows Through Rough Pipes
,”
Appl. Math. Modell.
,
34
(
6
), pp.
1458
1466
.10.1016/j.apm.2009.08.029
40.
Lim
,
D. C.
,
Al-Kayiem
,
H. H.
, and
Kurnia
,
J. C.
,
2018
, “
Comparison of Different Turbulence Models in Pipe Flow of Various Reynolds Numbers
,”
AIP Conf. Proc.
,
2035
, p.
020005
.10.1063/1.5075553
41.
Siemens Digital Industries Software,
Simcenter STAR-CCM+ User Guide, Version 2020.2.1
,”
Siemens Digital Industries Software.
42.
Hölzer
,
A.
, and
Sommerfeld
,
M.
,
2008
, “
New Simple Correlation Formula for the Drag Coefficient of Non-Spherical Particles
,”
Powder Technol.
,
184
(
3
), pp.
361
365
.10.1016/j.powtec.2007.08.021
43.
Feng
,
Z.-G.
,
Gatewood
,
J.
, and
Michaelides
,
E. E.
,
2021
, “
Wall Effects on the Flow Dynamics of a Rigid Sphere in Motion
,”
ASME J. Fluids Eng.
,
143
(
8
), p.
081106
.10.1115/1.4051215
44.
Gosman
,
A.
, and
Ioannides
,
E.
,
1981
, “
Aspects of Computer Simulation of Liquid-Fuelled Combustors
,”
AIAA
Paper No. 81-0323.10.2514/6.1981-323
45.
Mofakham
,
A. A.
, and
Ahmadi
,
G.
,
2020
, “
Improved DRW Model for Prediction of Deposition and Dispersion of Nano- and Micro-Particles in Turbulent Flows
,”
ASME
Paper No. FEDSM2020-20034.10.1115/FEDSM2020-20034
46.
Beck
,
A.
,
Ortwein
,
P.
,
Kopper
,
P.
,
Krais
,
N.
,
Kempf
,
D.
, and
Koch
,
C.
,
2019
, “
Towards High-Fidelity Erosion Prediction: On Time-Accurate Particle Tracking in Turbomachinery
,”
Int. J. Heat Fluid Flow
,
79
, p.
108457
.10.1016/j.ijheatfluidflow.2019.108457
47.
Fey
,
U.
,
König
,
M.
, and
Eckelmann
,
H.
,
1998
, “
A New Strouhal–Reynolds-Number Relationship for the Circular Cylinder in the Range 47<Re<2×105
,”
Phys. Fluids
,
10
(
7
), pp.
1547
1549
.10.1063/1.869675
You do not currently have access to this content.